

GridAPPS-D Platform, API, and App Documentation

[image: _images/GridAPPS-D_Logo.png]
GridAPPS-D™ is an open-source platform that accelerates development and deployment of portable applications for advanced distribution management and operations. It is built in a linux environment using Docker, which allows large software packages to be distributed as containers.

Its purpose is to reduce the time and cost to integrate advanced functionality into distribution operations, to create a more reliable and resilient grid.

GridAPPS-D enables standardization of data models, programming interfaces, and the data exchange interfaces for:

	devices in the field

	distributed apps in the systems

	applications in the control room

The platform provides

	robust testing tools for applications

	distribution system simulation capabilities

	standardized research capability

	reference architecture for the industry

	application development kit

The GridAPPS-D source code is publically available from GitHub [https://github.com/GRIDAPPSD]. The GridAPPS-D™ project is sponsored by the U.S. Department of Energy and receives ongoing updates from a team of core developers at PNNL.

The GridAPPS-D team encourages and appreciates community involvement, including issues and pull requests on GitHub, participation in monthly app developers meetings, and posts on the discussion board.

Questions and support requests should be filed in the GridAPPS-D Forum Discussion Board [https://github.com/GRIDAPPSD/gridappsd-forum/discussions]

General issues and bugs can be reported in the GridAPPS-D Forum Issues Page [https://github.com/GRIDAPPSD/gridappsd-forum/issues]

Bugs in the GridAPPS-D platform can be reported in full detail using the GOSS-GridAPPS-D Issues Page [https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/issues]

Installation & Runtime

	Windows 10 Installation
	WSL2 & Docker Desktop Setup

	Installing GridAPPS-D

	Installing GridAPPSD-Python and Notebook Tutorials

	Ubuntu Linux Installation
	Installing GridAPPS-D

	Installing GridAPPSD-Python and Notebook Tutorials

	VirtualBox Installation
	VirtualBox VM Setup

	Installing GridAPPS-D

	Installing GridAPPSD-Python and Notebook Tutorials

	Running GridAPPS-D
	Starting the GridAPPS-D Platform

	Stopping the Platform

	Restarting the Platform

	Changing Release Tags

	Pulling Updated Containers

	Using the GridAPPS-D Viz
	Accessing the GridAPPS-D Viz

	Creating a Simulation

	Running a Simulation with VIZ

	Docker Shortcuts
	About Docker

	Managing Running Containers

	3. Managing Container Images
	Managing Container Images

	Transferring Container Data

	Configuring GridAPPS-D Containers

	Cloud Server Configuration
	Configuring Remote GridAPPS-D VIZ

	Running GridAPPS-D Remotely

	GridAPPS-D Platform Release History
	Version 2021.04.0

	Version 2021.03.0

	Version 2021.02.0

	Version 2020.12.0

	Version 2020.11.0

	Version 2020.09.0

	Version 2020.08.0

	Version 2020.07.0

	Version 2020.05.0

	Version 2020.04.0

	Version 2020.03.0

	Version 2020.02.0

	Version 2020.01.0

	Version 2019.12.0

	Version 2019.10.0

	Version 2019.09.1

	Version 2019.09.0

	Version 2019.08.1

	Version 2019.08.0

	Version 2019.07.0

	Version 2019.06.0

	Version 2019.03.0

	Version: 2019.02.0

	Version: 2019.01.0

	Known VPN and Proxy Issues
	DNS Configuration

	Proxy Server Configuration

	Eclipse IDE Setup

GridAPPS-D Overview

	GridAPPS-D Introduction
	What is GridAPPS-D?

	GridAPPS-D Platform Characteristics

	Data Representation & Management

	Real-Time Distribution Simulation

	Using the GridAPPS-D Platform

	GridAPPS-D Architecture
	GridAPPS-D Architecture

	GridAPPS-D User Roles

	Integration with External Vendor Systems

	GridAPPS-D Applications

	GridAPPS-D Services

	GridAPPS-D Application Programming Interface

	GOSS Message Bus

	GridAPPS-D Core Services

	Co-Simulation Framework

	Database Structures

	GridAPPS-D Python Library
	Intro to GridAPPSD-Python

	Connecting to GridAPPS-D Platform

	Passing API calls with GridAPPSD-Python

	Importing Required Python Libraries

	GridAPPSD-Python GridAPPSD Library

	GridAPPSD-Python Topics Library

	GridAPPSD-Python Simulation Library

	GridAPPSD-Python DifferenceBuilder

	GridAPPS-D Application Structure
	Application Structure

	Connecting to GridAPPS-D Platform

	Querying for the Power System Model

	Querying for Measurement mRIDs

	Querying for Weather Data

	Configuring a Parallel Simulation

	Processing Measurements & App Core Algorithm

	Subscribing to Simulation Output

	Publishing Equipment Commands

	Querying Historical & Timeseries Data

	Subscribing and Publishing to Logs

	GridAPPS-D Service Structure

	Introduction to the Common Information Model
	Introduction

	Background and Structure of the CIM

	Summary of CIM XML Classes

	References

GridAPPS-D API Usage

	API Communication Channels
	/queue/ vs /topic/ Channels

	Static GridAPPS-D Topics

	Dynamic GridAPPS-D Topics

	API Message Structure
	Python Dictionaries VS JSON Strings

	Structure of a GridAPPS-D Message

	Parsing Returned Data

	Using the STOMP Client

	Using the PowerGrid Models API
	Introduction to the PowerGrid Model API

	API Syntax Overview

	CIM Objects Supported by PowerGrid Models API

	Object mRIDs vs Measurement mRIDs

	Object Classes vs Control Attributes

	Querying for Model mRIDS

	Querying for Equipment Dictionaries

	Querying for CIM Attributes

	Querying for Object Measurements

	Querying with a Custom SPARQL String

	Available Models in Default Installation

	Adding New Models to GridAPPS-D

	Adding New Models to the PowerGrid Models GitHub Repo

	Using the Configuration File API
	Introduction to the Configuration File API

	API Syntax Overview

	Querying for GridLab-D Configuration Files

	Querying for OpenDSS Configuration Files

	Querying for CIM Dictionary Files

	Running Simulations with the Simulation API
	Introduction to the Simulation API

	API Syntax Overview

	Simulation Start Message

	Power System Configuration

	Simulation Configuration

	Application Configuration

	Test Manager Configuration

	Complete Simulation Start Message

	Starting the Simulation

	Pausing, Resuming, or Stopping a Simulation

	Publishing and Subscribing with the Simulation API
	Introduction to the Simulation API

	Processing Measurements & App Core Algorithm

	Subscribing to Simulation Output

	Subscribing to Parallel Simulations

	Publishing Commands to Simulation Input

	Unsubscribing from a Simulation

	Using the Timeseries API
	Introduction to the Timeseries API

	API Syntax Overview

	Querying for Timeseries Data

	Using the Logging API
	Introduction to the Logging API

	GridAPPSD-Python Logging API Extensions

	Subscribing to Simulation Logs

	Publishing to Simulation Logs

	5.1. Publishing to Local App Logs

	5.2. Publishing to GridAPPS-D Logs

	Querying Saved Logs

GridAPPS-D Applications

	Resilient Restoration (WSU)
	Overview

	Installing GridAPPS-D

	Application Setup

	Starting Service

	Data Model

	Visualization

	License

	Volt-Var Optimization (WSU)
	Layout

	Creating the restoration application container

	Forming optimization problem

	Get real-time topology and load data of the test case

	DER Dispatch (NREL)
	Purpose

	Requirements

	Quick Start

	Creating the der-dispatch-app application container

	Application Configuration

	Solar Forecasting (NREL)
	Purpose

	Requirements

	Quick Start

	Creating the sample-app application container

	Grid Forecasting (NREL)
	Purpose

	Requirements

	Quick Start

	Creating the sample-app application container

GridAPPS-D Services

	GridAPPS-D DNP3 Service
	References

	GridAPPS-D Sensor Simulator Service
	Python Application Usage

	Service Configuration

	Request Example

	GridAPPS-D Voltage Violation Service
	Purpose

	Topics

	Message Structure

	GridAPPS-D State Estimator Service
	Purpose

	State estimator service layout

	Prerequisites

	Running state estimator from the gridappsd-docker container

	Building state estimator

	Running state estimator from the command line

	GridAPPS-D Alarm Service

Indices and tables

	Index

	Module Index

	Search Page

Windows 10 Installation

This section contains detailed installation instructions and runtime environment tips for running GridAPPS-D and its dependencies on a Windows 10 machine.

Installation & Runtime

	WSL2 & Docker Desktop Setup
	Docker Desktop Licensing

	System Requirements

	Windows 10 OS Build Requirments

	Disconnect from Corporate VPN

	Install Windows Subsystem for Linux

	Install Docker for Windows

	Installing GridAPPS-D
	Clone the GridAPPS-D Docker repository

	Install the GridAPPS-D Docker Containers

	Launch the GridAPPS-D Platform

	Known Issues around Corporate VPN Connectivity

	Installing GridAPPSD-Python and Notebook Tutorials
	Install Anaconda or Miniconda

	Install GridAPPSD-Python

	Install Jupyter Lab

	Python Training Notebooks

WSL2 & Docker Desktop Setup

Docker Desktop Licensing

As of Jan 31, 2022, a paid license is required for most Windows users to run Docker Desktop.

Docker Desktop is a third-party Windows program used to run the containerized software packages, such as GridAPPS-D.

Personal, small business, and education may still be permitted under ther free personal license of docker (referenced in these instructions).

For more information, see Docker Pricing & Licensing FAQ [https://www.docker.com/pricing/faq]

A typical Windows 10 installation does not include several of the tools needed to run the GridAPPS-D Platform Several software packages need to be installed prior to installing GridAPPS-D in the next step

Installation Steps:

	1. Verify System Requirements

	2. Verify OS Build

	3. Install Windows Subsystem for Linux

	3.1. Enable WSL

	3.2. Upgrade to WSL2

	3.3. Install Linux Ubuntu OS

	3.4. Set up Ubuntu in WSL

	4. Install Docker for Windows

It is also possible to use Virtualbox to create a virtual Ubuntu Linux machine. This approach may be used if it is desired to use Eclipse, etc. for Java development. However, performance of Virtualbox is significantly worse than WSL2 for running GridAPPS-D simulations and python application development.

System Requirements

	OS:

	Windows 10, Version 2004 or higher, with Build 19041 or higher

	RAM:

	8GB (absolute minimum for 13 and 123 node models, may encounter memory overload during installation);

	16GB (preferred for small models, minimum for 8500/9500 node models);

	32GB (recommended for application development)

	Disk Space:

	15GB required for installation

Note: The download size is quite large, so it is recommended to use a fiber or ethernet interent connection, rathered than a metered hotspot to avoid excessive data usage charges.

Windows 10 OS Build Requirments

To check your OS build, type winver in the Cortana seach bar:

[image: win-setup-run-winver]

Check to see if your OS is

	For x64 systems: Version 1903 or higher, with Build 18362 or higher.

	For ARM64 systems: Version 2004 or higher, with Build 19041 or higher.

[image: win-setup-goodbad-winver]

If not, run Windows Update to get the latest verion of Windows 10 available for your machine. It may take some time for the new OS to download. Multiple restarts are typical while upgrading the windows version.

Disconnect from Corporate VPN

There is a known issue with WSL2 and some corporate / laboratory VPNs. During WSL2 and docker installation, the Domain Name Server is set to that of your corporate intranet if your machine is connected to a VPN. This will cause issues when accessing github, etc. from within WSL2.

This issue has also been reported by users using Virtualbox VMs.

Install Windows Subsystem for Linux

GridAPPS-D and the associated docker containers will run using the Windows Subsystem for Linux (WSL), which is a new feature to Windows 10 that enables linux code to run natively in Windows without a separate virtual machine. The steps in this section are also available on the Microsoft website [https://docs.microsoft.com/en-us/windows/wsl/install-win10]

Enable WSL

Open Windows PowerShell as an administrator:

[image: open-powershell]

Enable WSL by entering

dism.exe /online /enable-feature /featurename:Microsoft-Windows-Subsystem-Linux /all /norestart

[image: enable-wsl2]

Then, without restarting, enable the virtual machine platform by entering

dism.exe /online /enable-feature /featurename:VirtualMachinePlatform /all /norestart

[image: enable-VM]

When completed, restart your machine. It may take a few minutes for the new settings to be applied while restarting.

Upgrade to WSL2

Download the latest WSL2 package .msi installer from the Microsoft repository [https://wslstorestorage.blob.core.windows.net/wslblob/wsl_update_x64.msi]

Run the update package to install WSL2 using the wizard:

[image: WSL-wizard]

Open Windows PowerShell again and update the settings to use WSL2 by entering

wsl --set-default-version 2

Install Linux Ubuntu OS

Open the Microsoft Store app, and search for Ubuntu and install the desired version (available versions are 16.04, 18.04, and 20.04)

[image: ubuntu-store]

When it has finished downloading, click Launch.

[image: ubuntu-launch]

Set up Ubuntu in WSL

Wait for the Ubuntu OS to install.

[image: ubuntu-setup]

Select a username and password. These do not need to be the same as your Windows or Microsoft Account login.

[image: ubuntu-username2]

Install Docker for Windows

Download and run Docker Desktop for Windows from Docker Hub [https://desktop.docker.com/win/stable/Docker%20Desktop%20Installer.exe]

Be sure to select “Install required components for WSL2”

[image: docker-wizard]

After restarting your machine, Docker should start automatically, and you will see a notification stating “Linux WSL2 containers are starting”

[image: containers-starting]

Installing GridAPPS-D

Clone the GridAPPS-D Docker repository

Disconnect from your corporate/laboratory VPN (if applicable) and open the Ubuntu terminal:

[image: win-setup-open-ubuntu]

Clone the GridAPPS-D repository:

git clone https://github.com/GRIDAPPSD/gridappsd-docker

[image: clone-gapps]

Install the GridAPPS-D Docker Containers

Change directories into the gridappsd-docker folder and start the latest stable release of the GridAPPS-D platform.

	cd gridappsd-docker

	./run.sh

[image: run-sh]

It is possible to specify a particular release tag using the -t option and the release tag

	./run.sh -t develop - use the develop branch with latest beta features

	./run.sh -t releases_2021.04.0 - use the April 2021 release

	./run.sh -t releases_2020.09.0 - use the September 2020 release

A complete set of releases is available in the Platform Release History

[image: gapps-run-develop]

Wait for the platform to download the required docker containers. This is a very large package and will take several minutes.

[image: pulling-containers]

After the containers have finished downloading, they will automatically be created and then launched:

[image: containters-pulled]

Launch the GridAPPS-D Platform

When all the containers are running, the terminal will move inside the docker enviroment, which has its own internal directories and path.

Start the GridAPPS-D platform inside the docker container by running

./run-gridappsd.sh

[image: start-platform]

The GridAPPS-D platform is now installed and running.

To confirm, open localhost:8080 [http://localhost:8080/] to access the GridAPPS-D Visualization App:

[image: localhost8080]

Known Issues around Corporate VPN Connectivity

There is a known issue around WSL2 and Virtualbox VM compatibility with corporate VPNs.

If your machine was connected to a corporate VPN during setup, the Doman Name Server (DNS) lookup address is set to that of your corporate intranet. To reset it, open an ubuntu session and edit the resolv.conf file

	sudo nano /etc/resolv.conf

	comment out existing nameserver address

	add new line with nameserver 8.8.8.8

	save file and restart terminal

[image: gridappsd-logo]

Installing GridAPPSD-Python and Notebook Tutorials

Install Anaconda or Miniconda

Download the latest version of the Miniconda from the Conda.io website [https://docs.conda.io/en/latest/miniconda.html]:

	Python 3.8 for 64-bit Windows [https://repo.anaconda.com/miniconda/Miniconda3-latest-Windows-x86_64.exe]

	Python 3.8 for 32-bit Windows [https://repo.anaconda.com/miniconda/Miniconda3-latest-Windows-x86.exe]

Use the installation wizard with the recommended settings to complete installation.

[image: miniconda]

After installation is complete, launch the Anaconda Prompt (Miniconda3) from the Start Menu or by typing anaconda in the Cortana toolbar

[image: launch-miniconda]

The miniconda terminal window will open

[image: miniconda-terminal]

Install GridAPPSD-Python

In the Miniconda terminal window, download and install GridAPPSD-Python by running

pip install gridappsd-python

to download the GridAPPSD-Python library and required packages.

[image: install-gapps-python]

GridAPPSD-Python and all dependencies should have been automatically added to your anaconda path after completion.

Install Jupyter Lab

In the miniconda terminal window, run

pip install jupyterlab

to install the Jupyter environment for executing the python notebooks. It may take a couple minutes to collect and install all the required packages.

[image: install-jupyter]

Python Training Notebooks

The Jupyter / iPython training notebooks are the source materials for the GridAPPS-D ReadTheDocs website.

The notebooks include all the code examples and sample app materials in a format that can connect to a local GridAPPS-D platform session and interact in real-time with simulations in real-time.

[image: notebook-platform-interaction]

Download Python Training Notebooks

In the miniconda terminal window, clone the python notebooks by running git clone https://github.com/GRIDAPPSD/gridappsd-training to download the python training notebooks.

|win_setup_install_notebooks.png|

By default, the notebooks will be saved in the directory C:\Users\username\gridappsd-training

Close the miniconda terminal

Running Python Training Notebooks

Start the Jupyter notebooks running on port 8890 (to avoid port sharing conflict with the GridAPPS-D Blazegraph database container):

jupyter notebook --port 8890

If running on a remote server (e.g. AWS cloud or university / laboratory server farm), start the notebooks by running

jupyter notebook --port 8890 --no-browser --ip='0.0.0.0'

Port Sharing between GridAPPS-D and Jupyter

By default, both Jupyter and the GridAPPS-D Blazegraph database use port 8889. If a Jupyter notebook is already running on port 8889, the Blazegraph database container will fail to start.

It is recommended to specify manually that Jupyter run on a different port:

jupyter notebook --port 8890

[image: gridappsd-logo]

Ubuntu Linux Installation

This section contains detailed installation instructions and runtime environment tips for running GridAPPS-D and its dependencies on an Ubuntu Linux machine.

Installation & Runtime

	Installing GridAPPS-D
	Clone the GridAPPS-D Repository

	Install Docker

	Install GridAPPS-D

	Installing GridAPPSD-Python and Notebook Tutorials
	Quick Installation

	Manual Installation

Installing GridAPPS-D

Clone the GridAPPS-D Repository

Clone the GridAPPS-D GitHub repository

git clone https://github.com/GRIDAPPSD/gridappsd-docker

[image: git-clone-gapps]

Install Docker

The GridAPPS-D repository includes a Docker installation script. This script only works for native linux environments (not WSL2).

Change directories into gridapps-docker and run the Docker installation script

	cd gridappsd-docker

	./docker_install_ubuntu.sh

[image: install-docker]`

Install GridAPPS-D

After Docker finishes installing, log out or restart the Ubuntu session.

After logging back in, change directories into gridappsd-docker and start the latest stable version of the GridAPPS-D platform, which will automatically download the required docker containers.

	cd gridappsd-docker

	./run.sh

To install a particular release, specify the release tag using the -t option:

	./run.sh -t develop – Install latest develop version with beta features

	./run.sh -t releases_2021.04.0 – Install April 2021 release

	./run.sh -t releases_2020.09.0 – Install September 2020 release

[image: install-2020.09]

Wait for the docker containers to finish downloading. This will take a while due to the package size.

[image: pull-containers]

When the containers have finished downloading and installing, start the GridAPPS-D Platform

	./run-gridappsd.sh

[image: run-gapps]

The GridAPPS-D platform is now installed and running.

To confirm, open localhost:8080 [http://localhost:8080/] to access the GridAPPS-D Viz

[image: localhost-8080]

[image: gridappsd-logo]

Installing GridAPPSD-Python and Notebook Tutorials

Quick Installation

Clone the GridAPPSD-Training Repository and run the ./install.sh script

	git clone https://github.com/GRIDAPPSD/gridappsd-training.git

	cd gridappsd-training

	./install.sh

Accept the user terms for Miniconda and Jupyterlab.

After completion, the JupyterLab server will be running in a virtual environment with the training notebooks

[image: ubuntu-clone-training]

[image: ubuntu-py-install]

To start the jupyter notebooks at a later time, change directories into gridappsd-training and run the ./run.sh script:

	cd gridappsd-training

	./run.sh

Manual Installation

Install Anaconda or Miniconda

If not pip is not installed, use apt-get to install it.

	sudo apt-get install python-pip

[image: python-pip]

Download the latest version of Anaconda or Miniconda and save it in the /Downloads folder:

	Use Python 3.8 install for 64-bit systems from the Conda.io website [https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh].

	Use Python 3.7 install for 32-bit systems from the Conda.io website [https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86.sh]

Install Miniconda using bash

	cd /Downloads

	bash Miniconda3-latest-Linux-x86_64.sh

[image: bash-miniconda]

Follow the prompts on the installer screens. If you are unsure about any setting, accept the defaults. You can change them later. To make the changes take effect, close and then re-open your terminal window.

Test your installation. In your terminal window or Anaconda Prompt, run the command conda list. A list of installed packages appears if it has been installed correctly

Install GridAPPSD-Python

Use pip to install GridAPPSD-Python, which is need to pass API Calls to GridAPPS-D platform using the GridAPPSD-Python library methods:

	pip install gridappsd-python

[image: pip-install-gapps]

Install Jupyter Lab

Use pip to install Jupyter Lab, which is need to open and execute the Python Training Notebooks:

	pip install jupyterlab

[image: Screenshot%20from%202020-11-01%2015-24-36.png]

Download Python Notebooks

The Jupyter / iPython training notebooks are the source materials for the GridAPPS-D ReadTheDocs website.

The notebooks include all the code examples and sample app materials in a format that can connect to a local GridAPPS-D platform session and interact in real-time with simulations in real-time.

Clone the python notebooks in the GridAPPSD-Training repository by running

	git clone https://github.com/GRIDAPPSD/gridappsd-training

By default, the notebooks will be saved in the directory gridappsd-training

[image: notebook-platform-interaction]

Clone the python notebooks in the GridAPPSD-Training repository by running

	git clone https://github.com/GRIDAPPSD/gridappsd-training

Start the Jupyter notebooks running on port 8890 (to avoid port sharing conflict with the GridAPPS-D Blazegraph database container):

jupyter notebook --port 8890

If running on a remote server (e.g. AWS cloud or university / laboratory server farm), start the notebooks by running

jupyter notebook --port 8890 --no-browser --ip='0.0.0.0'

Port Sharing between GridAPPS-D and Jupyter

By default, both Jupyter and the GridAPPS-D Blazegraph database use port 8889. If a Jupyter notebook is already running on port 8889, the Blazegraph database container will fail to start.

It is recommended to specify manually that Jupyter run on a different port:

jupyter notebook --port 8890

[image: gridappsd-logo]

VirtualBox Installation

This section contains detailed installation instructions and runtime environment tips for running GridAPPS-D and its dependencies on a VirtualBox VM on Windows 10. MacOS and Linux users do not need a VM to install GridAPPS-D.

Installation & Runtime

	VirtualBox VM Setup
	System Requirements

	Download VirtualBox

	Download Ubuntu Linux OS

	Create an Ubuntu VM

	Configure the Ubuntu VM

	Installing GridAPPS-D
	Clone the GridAPPS-D Repository

	Install Docker

	Install GridAPPS-D

	Installing GridAPPSD-Python and Notebook Tutorials
	Quick Installation

	Manual Installation

VirtualBox VM Setup

Docker Desktop Licensing

As of Jan 31, 2022, a paid license is required for most Windows users to run Docker Desktop.

Docker Desktop is a third-party Windows program used to run the containerized software packages, such as GridAPPS-D.

Personal, small business, and education may still be permitted under ther free personal license of docker (referenced in these instructions).

For more information, see Docker Pricing & Licensing FAQ [https://www.docker.com/pricing/faq]

VirtualBox VM

A VirtualBox installation provides an option for running GridAPPS-D on Windows machines without a Docker Desktop license.

Installation Steps:

	1. Verify System Requirements

	2. Download VirtualBox

	3. Download Ubuntu Linux OS

	4. Create an Ubuntu VM

	5. Configure the Ubuntu VM

System Requirements

	OS:

	Windows 10, Version 2004 or higher, with Build 19041 or higher

	RAM:

	8GB (absolute minimum for 13 and 123 node models, may encounter memory overload during installation);

	16GB (preferred for small models, minimum for 8500/9500 node models);

	32GB (recommended for application development)

	Disk Space:

	15GB required for installation

Note: The download size is quite large, so it is recommended to use a fiber or ethernet interent connection, rathered than a metered hotspot to avoid excessive data usage charges.

Download VirtualBox

Download the latest version from the VirtualBox website [https://www.virtualbox.org/wiki/Downloads]

Run the .exe file after the download is complete.

[image: vb-wizard]

Continue with all default options to install VirtualBox

[image: vb-defaults]

After the installation wizard has finished, select “Start Orace VM Virtualbox after installation” and click “Finish”

[image: vb-wizard-done]

Download Ubuntu Linux OS

Download Ubuntu 20.04.03 from the OSBoxes.org website [https://www.osboxes.org/ubuntu/]

Alternatively, you can download the installer directly from the associated SourceForge link [https://sourceforge.net/projects/osboxes/files/v/vb/55-U-u/20.04/20.04.3/Desktop/64bit.7z/download]

[image: linux]

You will need 7-Zip to unzip the download file. You can download and install the tool from the 7-Zip Website [https://www.7-zip.org/]

After the download is complete, right-click on the zipped download and unzip the Ubuntu OS file in a directory where you can easily find it.

[image: 7-zip]

Create an Ubuntu VM

Return to VirtualBox and click New to create a new virtual machine.

[image: new-vm]

Enter Ubuntu in the space for Name:. VirtualBox should automatically populate the remaining forms in the window. Click Next to continue.

[image: enable-wsl2]

It is recommended to select at least 8 GB of RAM for the VM instance.

[image: select-ram]

Select Use an existing virtual disk file and click on the folder icon

[image: select-disk-1]

Click “Add” to add the downloaded disk image for Ubuntu 20.04.3 that you unzipped previously.

[image: select-os-file]

Then click Choose and Create to create the new virtual machine.

[image: choose]

[image: create]

Configure the Ubuntu VM

Click the Settings icon to configure the VM.

[image: settings-1]

Next, select System from the left menu and then the Processor tab.

It is recommended to allocate 4 CPU cores to GridAPPS-D (2 at minimum)

[image: cpu]

Next, select Display from the left menu. Increase the Video Memory to at least 32 MB.

Check the Acceleration box to enable 3D acceleration of graphics windows.

[image: display]

Click OK to save the settings. Then, start the VM by right-clicking on the VM instance and selecting Normal Start

[image: start]

After the VM has launched, login with the default username and password: * username: osboxes.org * password: osboxes.org

[image: login]

Enable clipboard sharing for copy-paste capability between your windows and virtualbox environments.

[image: clipboard]

Click the Devices menu and select Insert Guest Additions CD image ... and follow the prompts to load missing components.

[image: devices]

[image: installed]

After all modules are built, open a new terminal and reboot the VM using sudo reboot

[image: reboot]

Finally, update all modules and install git and pip by running

	sudo apt-get install update

	sudo apt-get install git

	sudo apt-get install pip

[image: update]

[image: install-git]

[image: pip]

[image: gridappsd-logo]

Installing GridAPPS-D

Clone the GridAPPS-D Repository

Clone the GridAPPS-D GitHub repository

git clone https://github.com/GRIDAPPSD/gridappsd-docker

[image: git-clone-gapps]

Install Docker

The GridAPPS-D repository includes a Docker installation script. This script only works for native linux environments (not WSL2).

Change directories into gridapps-docker and run the Docker installation script

	cd gridappsd-docker

	./docker_install_ubuntu.sh

[image: install-docker]`

Install GridAPPS-D

After Docker finishes installing, log out or restart the Ubuntu session.

After logging back in, change directories into gridappsd-docker and start the latest stable version of the GridAPPS-D platform, which will automatically download the required docker containers.

	cd gridappsd-docker

	./run.sh

[image: run]

To install a particular release, specify the release tag using the -t option:

	./run.sh -t develop – Install latest develop version with beta features

	./run.sh -t releases_2022.01.0 – Install January 2022 release

	./run.sh -t releases_2020.09.0 – Install September 2020 release

Wait for the docker containers to finish downloading. This will take a while due to the package size.

When the containers have finished downloading and installing, start the GridAPPS-D Platform

	./run-gridappsd.sh

[image: run-gapps]

The GridAPPS-D platform is now installed and running.

To confirm, open localhost:8080 [http://localhost:8080/] to access the GridAPPS-D Viz

[image: localhost-8080]

[image: gridappsd-logo]

Installing GridAPPSD-Python and Notebook Tutorials

Quick Installation

Clone the GridAPPSD-Training Repository and run the ./install.sh script

	git clone https://github.com/GRIDAPPSD/gridappsd-training.git

	cd gridappsd-training

	./install.sh

Accept the user terms for Miniconda and Jupyterlab.

After completion, the JupyterLab server will be running in a virtual environment with the training notebooks

[image: ubuntu-clone-training]

[image: ubuntu-py-install]

To start the jupyter notebooks at a later time, change directories into gridappsd-training and run the ./run.sh script:

	cd gridappsd-training

	./run.sh

Manual Installation

Install Anaconda or Miniconda

If not pip is not installed, use apt-get to install it.

	sudo apt-get install python-pip

[image: python-pip]

Download the latest version of Anaconda or Miniconda and save it in the /Downloads folder:

	Use Python 3.8 install for 64-bit systems from the Conda.io website [https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh].

	Use Python 3.7 install for 32-bit systems from the Conda.io website [https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86.sh]

Install Miniconda using bash

	cd /Downloads

	bash Miniconda3-latest-Linux-x86_64.sh

[image: bash-miniconda]

Follow the prompts on the installer screens. If you are unsure about any setting, accept the defaults. You can change them later. To make the changes take effect, close and then re-open your terminal window.

Test your installation. In your terminal window or Anaconda Prompt, run the command conda list. A list of installed packages appears if it has been installed correctly

Install GridAPPSD-Python

Use pip to install GridAPPSD-Python, which is need to pass API Calls to GridAPPS-D platform using the GridAPPSD-Python library methods:

	pip install gridappsd-python

[image: pip-install-gapps]

Install Jupyter Lab

Use pip to install Jupyter Lab, which is need to open and execute the Python Training Notebooks:

	pip install jupyterlab

[image: Screenshot%20from%202020-11-01%2015-24-36.png]

Download Python Notebooks

The Jupyter / iPython training notebooks are the source materials for the GridAPPS-D ReadTheDocs website.

The notebooks include all the code examples and sample app materials in a format that can connect to a local GridAPPS-D platform session and interact in real-time with simulations in real-time.

Clone the python notebooks in the GridAPPSD-Training repository by running

	git clone https://github.com/GRIDAPPSD/gridappsd-training

By default, the notebooks will be saved in the directory gridappsd-training

[image: notebook-platform-interaction]

Clone the python notebooks in the GridAPPSD-Training repository by running

	git clone https://github.com/GRIDAPPSD/gridappsd-training

Start the Jupyter notebooks running on port 8890 (to avoid port sharing conflict with the GridAPPS-D Blazegraph database container):

jupyter notebook --port 8890

If running on a remote server (e.g. AWS cloud or university / laboratory server farm), start the notebooks by running

jupyter notebook --port 8890 --no-browser --ip='0.0.0.0'

Port Sharing between GridAPPS-D and Jupyter

By default, both Jupyter and the GridAPPS-D Blazegraph database use port 8889. If a Jupyter notebook is already running on port 8889, the Blazegraph database container will fail to start.

It is recommended to specify manually that Jupyter run on a different port:

jupyter notebook --port 8890

[image: gridappsd-logo]

Running GridAPPS-D

Starting the GridAPPS-D Platform

If you are accessing this section after completing the installation steps in the previous procedure, then the GridAPPS-D Platform is already running.

When you start your machine next time, you will need to start the GridAPPS-D Platform again. To do this, change directories into gridappsd-docker and run the ./run.sh script

	cd gridappsd-docker

	./run.sh or ./run.sh -t release_tag

A complete set of releases of the GridAPPS-D Platform is available under Platform Release History

[image: run-sh]

Stopping the Platform

Stopping the Platform from Inside the Docker Container

If you are currently inside the ./run-gridappsd.sh script inside the docker container, use Ctrl+C to stop the platform. Some error messages may be displayed as the platform services are stopped.

|gapps_cntrl_c|

Then exit the docker container using exit. This will return to the main ubuntu bash command line:

[image: gapps-exit]

Then run the ./stop.sh script to shut down all the docker containers and free RAM used by the Platform:

[image: gapps-stop-sh-2]

Stopping the Platform from a New Terminal

If your terminal was reset or closed, you can stop the platform and shut down all docker containers by changing directories into gridappsd-docker and running the ./stop.sh script:

	cd gridappsd-docker

	./stop.sh

[image: stop-sh]

Restarting the Platform

After the Platform has been stopped, it can be restarted by running the ./run.sh script again from within the gridappsd-docker directory

[image: run-sh-again]

Changing Release Tags

To change the Platform to run on a different release, run the ./stop.sh script using the -c option to remove the current containers.

[image: change-tags]

Remove the gridappsd directory using sudo rm -r gridappsd gridappsdmysql

[image: sudo-rm]

Then start the platform again specifying the particular release tag desired. A complete list of platform releases is available in Platform Release History

[image: run-sh-again]

Pulling Updated Containers

The GridAPPS-D platform should automatically check for and pull updated containers each time the ./run.sh script is run.

However, it is sometimes necessary to force docker to pull new containers (e.g. if using a custom set of containers as specified by modifying the docker-compose.yml file).

New containers can be pulled by running docker-compose pull from within the gridappsd-docker directory

[image: docker-compose-pull]

[image: gridappsd-logo]

Using the GridAPPS-D Viz

Accessing the GridAPPS-D Viz

Start the Platform using the ./run.sh and ./run-gridappsd.sh scripts as explained in Running GridAPPS-D. After the Platform is running, open your browser and navigate to localhost:8080 [http://localhost:8080] for desktop installations and your.server.ip.address:8080 for cloud installations.

You should see a splash screen with login options for various user roles. The default username and password combinations are available in the GOSS core security config file [https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/blob/master/gov.pnnl.goss.gridappsd/conf/pnnl.goss.core.security.userfile.cfg].

[image: splash-screen]

If the ./run-gridappsd.sh script inside the GridAPPS-D docker container has not been started or has been interrupted, you will see a server connection error when attempting to log in:

[image: login-error]

After logging in, there are two menus in the top left and right corners. On the left is the main menu for using the VIZ features. On the right is the settings menu.

[image: menus]

The settings menu contains options for changing the color theme from dark to light, the time zone used, and level of logging detail.

[image: settings-menu]

[image: light-theme]

On the left is the main menu, which has options for creating simulations, comparing simulations, exploring the databases, and passing API calls through the STOMP client. Each of these will be explained in detail below.

[image: main-menu]

Creating a Simulation

To create a simulation from the GridAPPS-D VIZ, select Configure New Simulation from the main menu:

[image: config-new-sim]

Power System Configuration

The first tab provides a set of menu options to select the desired distribution feeder on which the simulation will run. Detailed descriptions of the available test feeders inlcuded by default are provided in Available Models in Default Installation.

[image: select-feeder]

Simulation Configuration

The next tab provides several options for specifying

	simulation start time (which determines weather and load data used)

	simulation duration in seconds

	simulator used

	real-time

	If checked, 1 sec of clock time equals 1 sec of simulation time

	If unchecked, the simulation runs as fast as possible (used for generating AI training data)

	simulation name

	model configuration

The model creation configuration textbox enables modification of the model from the default configuration, inlcuding opening/closing switches, changing DER setpoints, and changing the load profile. Details of the syntax for custom configurations is explained in Simulation Configuration Settings

[image: simulation-config]

Application Configuration

The application configuration tab enables selection of which app should run during the simulation. The GridAPPS-D VIZ allows for selection of just one app at a time. Two or more apps may be run simultaneously by starting the simulation through the Simulation API and specifying the desired apps using the Application Configuration Settings

[image: app-config]

Test Manager Configuration

The Test Manager is used to create realistic operational events during the course of the simulation, including faults, communication outages, and custom event scripts.

The GridAPPS-D Viz provides a graphic interface for building TestManager event scripts, which are described in detail in Test Manager Configuration.

For large models (such as the IEEE 8500 node and 9500 node test systems), it may take several seconds for the model dictionary to load. While the power system model is being queried, a splashscreen will be displayed.

[image: test-manager]

Communication outages

The first option is to create communication outages for both SCADA measurements and equipment control commands by clicking the CommOutage radio button.

Equipment control commands can be blocked by specifying an Input Outage with options for

	start time

	end time

	all equipment (outages all commands for all equipment if checked)

	equipment type

	equipment name

	affected phases

	CIM control attribute

To add an Input Outage, specify the desired options, click the + button, and then click the Add event button at the bottom of the page. The speficied outages will then be displayed on the right side under the CommOutage tab.

[image: comm-input-outage]

Measurement sensor outages can be created with an Output Outage with options for

	all measurements (all sensors outages if checked)

	equipment type

	equipment name

	affected phases

	measurement type (voltage, apparent power, position)

To add an Output Outage, specify the desired options, click the + button, and then click the Add event button at the bottom of the page. The speficied outages will then be displayed on the right side under the CommOutage tab.

[image: config-input-outage]

Equipment Faults

The next option is to create a fault on any class of equipment in the model by clicking the Fault radio button. Options will appear to select the

	equipment type

	equipment name

	phases to be faulted

	type of fault

	start time

	end time

	fault impedance

After setting the values, click the Add event button. The fault will be displayed on the right side of the screen under the Fault tab.

When the simulation reaches the event start time, the logical fault simulator traces the fault up to first upstream switch and opens that switch to clear the fault.

Note: The GridLAB-D logical fault simulator currently may not process faults in meshed networks correctly and fail to open the appropriate set of switches to clear the fault. This is a known bug with a workaround to open the appropriate switches using a custom Test Manager event file.

[image: config-test-fault]

Custom Event Files

Custom event messages can be written in format of a CIM Difference Message. The format of custom event files is explained in Scheduled Command Events.

Event files can be uploaded by clicking the cloud-shaped button and selecting the desired files to be uploaded from your local machine. Click Open to upload each file. The custom event will then be displayed under the Command tab.

[image: custom-event]

2.5. Service Configuration

The last tab is the GridAPPS-D service configuration. This enables selection of particular services that should be run along with the simulation, such as the Sensor Simulator or DNP3 service.

[image: service-config]

After selecting all desired simulation parameters, click Submit to start the simulation.

Running a Simulation with VIZ

After clicking Submit, the GridAPPS-D VIZ will generate a new oneline diagram for the desired feeder. Large models, such as the IEEE 8500 and 9500 node test systems, will take several seconds to load. A splashscreen will be displayed while the oneline diagram is being created.

[image: sim-loading-oneline]

The oneline diagram will then appear in the main window under the Simulation tab.

Across the tab are three more tabs for events loaded into the simulation, applications configured to run, and SCADA alarms received during the simulation.

Simulation Tab

The Simulation Tab contains options for viewing and controlling equipment in the feeder model.

[image: simulation-tab]

Starting, Pausing, and Stopping a Simulation

To start the simulation, click the start button shown above. A “Simulation is starting” message will be displayed while the CIM model is imported, converted, and configured to run with the specified simulation parameters.

After the simulation starts, a unique simulation ID will be created and displayed in the top left corner. This ID is used by applications to communicate with the correct simulation (as multiple simulations may be running simulateously).

The simulation may be paused or stopped using the pause and stop button in the top right corner of the simulation window.

[image: sim-tab-2]

Viewing equipment names

To view the names of devices in the feeder, zoom in using the mouse wheel and hover over the desired piece of equipment. Its name will be displayed below.

[image: view-equip-name]

Opening and Closing Switches

Closed switches are displayed as a red breaker square. Open switches are green.

To open or close a switch, left-click on the square and select the desired state from the menu. Click Apply

[image: select-switch]

[image: open-switch]

Events Tab

The Events Tab shows events that were created using the TestManager and are scheduled to occur over the course of the simulation.

[image: events-tab]

Applications Tab

The Applications Tab shows events that are available for the current simulation.

[image: apps-tab]

Alarms Tab

The GridAPPS-D Alarms service monitors the GOSS Message Bus and generates alarms for common equipment control actions, including

	Switch open/close

	Capacitor open/close

	Regulator tap change

The Alarms Tab is the last one in the top ribbon and diplays a notification with the number of new alarms that have not been viewed:

[image: post-event-alarms]

Under the Alarms Tab is a table indicating the piece of equipment for which the alarm occured, the time of the alarm, and source of the action.

Alarms created by events defined in the TestManager (such as fault events and scheduled command events) appear as being created by testmanager1:

[image: alarm-tab]

Alarms can be acknowledged and removed from the table by clicking the check mark button (✔) on the far left of each row.

The alarm location can be viewed by clicking on the magnifying glass button (🔍). This will switch to the Simulation tab and the particular piece of equipment will be highlighted with an expanding circle.

[image: alarms-tab]

Creating Stripchart Plots

GridAPPS-D contains a set of basic plotting features for common power system parameters

New plots can be added by cliking the trendline button to the right of the pause and stop buttons.

[image: sim-open-plots]

A pop-up dialog will appear to select the desired plots with several options:

	Created plots – edit custom plots that have already been created

	Plot name – custom text string that will be displayed as plot title

	Component type – Power (VA), Tap (Pos), or Voltage (PNV) measurement type

	Magnitude / Angle

	Apparent power & acos(power factor) for power measurements

	Voltage magnitude & phase angle for voltage measurements

	Component – Component name, type to search

	Phases – Any combination of A, B, and C phases to plot

Be sure to click the Add component button before clicking Done

[image: images-create-plot]

After clicking the Done button, the new custom plots will appear in the right-hand pane of the window.

[image: sim-plot-results]

Alternate plot colors are available by switching from the theme from dark to light:

[image: plots-light-theme]

[image: gridappsd-logo]

Docker Shortcuts

About Docker

Docker is an open platform for developing, shipping and running applications. GridAPPS-D uses Docker to package applications, services, and the individual components of the GridAPPS-D Platform.

Each application and underlying platform component run in a loosely isolated environment known as a Docker Container. Each container is assigned a unique identifier string and a human-readable name which are used to interact with that container during runtime.

More detailed information about Docker and Docker Containers is available on Docker Docs [https://docs.docker.com/get-started/overview/]

Managing Running Containers

View Running Containers

To view all containers that are currently running, use the docker ps command.

A list of all containers with the container ID, image name, and ports currently used will be printed to the terminal window.

[image: docker-ps]

Enter a Running Container

To enter a container, use the docker exec command with the container name. For example, to enter the GridAPPS-D container, run

docker exec -it gridappsd /bin/bash

Note that earlier releases of the GridAPPS-D platform did not use consistent names, so if you are running a 2021 or earlier release, it is necessary to use the container ID obtained from the docker ps command:

docker exec -it 123con45name /bin/bash

[image: docker-exec]

View Contents of a Container

After entering a container with docker exec -it containername /bin/bash, use the ls -l command to view the contents of a container.

Directories inside the GridAPPS-D container that you may wish to access:

	applications: This directory contains custom applications loaded into the platform

	log: This directory contains a copy of the log, which can be viewed by running cat gridappsd.log

	services: This directory contains available services and service config files

It is also possible to access any other folder in container, such as /tmp by running cd /tmp from inside the container

[image: docker-ls]

Exit a Running Container

To exit a running container, simply type exit from inside the container

[image: docker-exit]

Kill a Running Container

To stop a running container, use docker kill container_name. This command should only be used if a container has crashed or become unresponsive. The GridAPPS-D platform should be stopped with the ./stop.sh script.

[image: docker-kill]

3. Managing Container Images

Managing Container Images

This section lists common docker commands for managing containers and images stored on your hard disk

Prune Unused Images

To free up hard disk space, delete unused containers and images by running docker system prune -a

Delete All Containers

Use this command with caution! This command will delete *everything*!

If the docker containers have been corrupted, it may be necessary to delete all containers and images. This will delete all local copies of the GridAPPS-D Platform, all simulation data, and all custom models uploaded to Blazegraph.

	Stop all containers: docker-compose down

	Delete all containers: docker rm -f $(docker ps -a -q)

	Delete all volumes: docker volume rm $(docker volume ls -q)

[image: docker-delete]

Update Containers Manually

Generally, the GridAPPS-D platform automatically checks for new container images when running the /run.sh command.

It is also possible to force docker to check for new images and download new containers by running docker-compose pull

Transferring Container Data

Files in docker containers are isolated from the rest of the file directories. To edit or run them with another program, such as OpenDSSCMD or GridLAB-D, it is necessary to copy those files using the docker cp command

Transferring Configuration File API Output

The Configuration File API contains two calls for converting the CIM XML power system and exporting all GridLAB-D files and exporting all OpenDSS files.

These API calls write the requested files to the directory in the gridappsd: container specified by the "directory": key.

To transfer the requested files from inside the container to the machine hard disk, use the docker cp source_path dest_path command:

	Default GLM path: docker cp gridappsd:/tmp/gridlabdsimulation /home/your_username/your_dest_path

	Default DSS path: docker cp gridappsd:/tmp/dsssimulation /home/your_username/your_dest_path

Transferring Simulation GLM Files

During simulation startup, the GridAPPS-D Platform stores the GridLab-D simulation startup files and model in a temporary folder named after the simulation ID.

When debugging why the simulation solution of a new power system model does not converge, it is extemely useful to copy the GLM solution files to debug the model outside of the docker container.

First, start a simulation of the desired power system model using the GridAPPS-D Viz or using the Simulation API.

Copy the simulation id from Viz by left-clicking on the simulation ID or from your application’s API call:

[image: copy-sim-id]

The simulation files can be copied out of the Docker container by running

docker cp gridappsd:/tmp/gridappsd_tmp/sim_id /home/your_username/your_dest_path

Example: For the simulation above with simulation ID 78890427, the command to copy the files to a new folder named “my_glm_files” would be

docker cp gridappsd:/tmp/gridappsd_tmp/78890427 /home/ubuntu/my_glm_files

Configuring GridAPPS-D Containers

The GridAPPS-D Platform can be configured and customized by editing the docker-compose.yml file in the gridappsd-docker directory using your preferred text editor

Adding Applications

… .

Adding New Services

To add a new underlying service, add the local path for the new service to the volumes: section of the gridappsd container:

volumes:
 - ~/my_path/my_service:/gridappsd/services/my-service
 - ~/my_path/my_service/my-service.config:/gridappsd/services/my-service.config

The example below shows how a repository containing two new services is added manually to the gridappsd-container

[image: volumes-add-service]

Changing Tags of a Container

The GridAPPS-D platform can be pinned to use a particular container by specifying the particular release in the image: section of the particular container:

	image: gridappsd/container_name:releases_release_name

It is not recommended to pin to a specific container except for debugging or if the application uses a deprecated feature from an old GridAPPS-D Platform release.

The example below shows how the main gridappsd container and viz can be pinned to particular releases.

[image: image-pinned]

Building a Local GridAPPS-D Container

To build and test a local version of the GridAPPS-D container (such as for a feature pull request), first clone the desired branch of the GOSS-GridAPPS-D repository:

	git clone https://github.com/GRIDAPPSD/GOSS-GridAPPS-D.git -b branch_to_test

Change directories into GOSS-GridAPPSD folder and run the container build script. It make take a few minutes for the container to build.

	cd GOSS-GridAPPS-D

	./build-gridappsd-container

[image: build-container]

Then edit the docker-compose.yml file and change the gridappsd image to local:

	image: gridappsd:local

[image: image-local]

After saving the docker-compose.yml file, restart the gridappsd platform by running ./stop.sh and the ./run.sh

[image: gridappsd-logo]

Cloud Server Configuration

The GridAPPS-D Platform is easily configured to run remotely on a remote linux ubuntu server. No changes need to be made to the platform. However, it is necessary to specify the IP address for the VIZ user interface.

Configuring Remote GridAPPS-D VIZ

To access the GridAPPS-D VIZ from a local client, it is necessary to specify the IP address of the remote server.

In the ~/gridappsd-docker/conf/ directory, create a new file named viz.config.

The configuration file is formatted as a JSON string specifying the version of the VIZ used and the IP address and port to be used:

{
 "version": "remote:develop",
 "host": "my.server.ip.address:61614"
}

Running GridAPPS-D Remotely

To run the GridAPPS-D Platform with Viz remotely, specify the -r option when starting the platform:

	Running with default release: ./run.sh -r

	Running with develop release: ./run.sh -r -t develop

	Running with a specific tag: ./run.sh -r -t releases_2022.01.0

[image: GridAPPS-D-narrow.png]

GridAPPS-D Platform Release History

Version 2021.04.0

Install using ./run.sh -t releases_2021.04.0

	New Features

	Platform added the capability for Applications to send Ochre commands to the simulations.

	Powergrid-Models added IEEE 13 OCHRE model update.

	Resolved issue with Proven write simultion input

	Source Code

	goss-gridapps-d - https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/tree/releases/2021.04.0

	gridappsd-viz - https://github.com/GRIDAPPSD/gridappsd-viz/tree/releases/2021.04.0

	gridappsd-python - https://github.com/GRIDAPPSD/gridappsd-python/tree/releases/2021.04.0

	cim2glm - https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2021.04.0

	proven-cluster - https://github.com/pnnl/proven-cluster/releases/tag/v1.3.8.1

	proven-client - https://github.com/pnnl/proven-client/releases/tag/v1.3.6

	proven-message - https://github.com/pnnl/proven-message/releases/tag/v1.3.5.4

	proven-docker - https://github.com/GRIDAPPSD/proven-docker/tree/releases/2021.04.0

	fncs - https://github.com/GRIDAPPSD/fncs/tree/develop

	gridappsd-docker-build - https://github.com/GRIDAPPSD/gridappsd-docker-build/tree/releases/2021.04.0

Version 2021.03.0

Install using ./run.sh -t releases_2021.03.0

	New Features

	Platform switched from using Cim2Glm to CimHub library for power grid APIs.

	Powergrid-Models repository refactored to contianer only models.

	CimHub repository refactored to contain CimHub library and related utility functions

	Resolved issue regarding clean exit of HELICS on simulation stopped by user

	Resolved issue with Proven storing test manager input messages

	Viz: added timezome support

	Viz: Resolved issues with powerflow direction arrows

	Updated documentaiton on CimHub

	Added integration tests for configuration and alarm API

	Source Code

	goss-gridapps-d - https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/tree/releases/2021.03.0

	gridappsd-viz - https://github.com/GRIDAPPSD/gridappsd-viz/tree/releases/2021.03.0

	gridappsd-python - https://github.com/GRIDAPPSD/gridappsd-python/tree/releases/2021.03.0

	cim2glm - https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2021.03.0

	proven-cluster - https://github.com/pnnl/proven-cluster/releases/tag/v1.3.7.4

	proven-client - https://github.com/pnnl/proven-client/releases/tag/v1.3.6

	proven-message - https://github.com/pnnl/proven-message/releases/tag/v1.3.5.4

	proven-docker - https://github.com/GRIDAPPSD/proven-docker/tree/releases/2021.03.0

	fncs - https://github.com/GRIDAPPSD/fncs/tree/develop

	gridappsd-docker-build - https://github.com/GRIDAPPSD/gridappsd-docker-build/tree/releases/2021.03.0

	gridlab-d - https://github.com/GRIDAPPSD/gridlab-d/tree/develop

	sample-app - https://github.com/GRIDAPPSD/gridappsd-sample-app/tree/releases/2021.03.0

Version 2021.02.0

	New Features

	Added HELICS as a simulator. This included adding HELICS in GridAPPS-D docker container and adding HELICS service configuration file

	Added HELICS-GOSS bridge to translate control and measurement messages between HELICS and platform.

	Generated HELICS configurations for GridLAB-D

	Added unit testing framework for the HELICS-GOSS bridge

	Added SoC support to the HELICS-GOSS bridge.

	Updated Test Manager to publish results as they are processed intead of at the end of the simulation.

	Updated services to use platform log level

	Added test users to test various roles

	Updated to use username/password from environment variables instead of hardcoded in soruce code

	Fixed APIs where response was not correct when selecting response format as XML

	Added OCHRE house simulator in the GridAPPSD docker container. Tested it with GridLAB-d and HELICS.

	Corrected naming of S2 69kV breaker names to match sub-transmission diagram

	Updated IEEE 13Assets model. Line length issue was fixed in opendsscmd 1.2.15

	Viz: Switched the arrow directions of selected lines and switches to display power flow direction.

	Viz: Plotting the Time Series Simulation Vs. Time Series Simulation results.

	Sample app updated to use token-based authentication.

	Updated gridappsd-python library for token-based authentication

	Added tests for configuration and power grid APIs

	Source Code

	goss-gridapps-d - https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/tree/releases/2020.02.0

	gridappsd-viz - https://github.com/GRIDAPPSD/gridappsd-viz/tree/releases/2020.02.0

	gridappsd-python - https://github.com/GRIDAPPSD/gridappsd-python/tree/releases/2020.02.0

	cim2glm - https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2020.02.0

	proven-cluster - https://github.com/pnnl/proven-cluster/releases/tag/v1.3.7.3

	proven-client - https://github.com/pnnl/proven-client/releases/tag/v1.3.6

	proven-message - https://github.com/pnnl/proven-message/releases/tag/v1.3.5.4

	proven-docker - https://github.com/GRIDAPPSD/proven-docker/tree/releases/2020.02.0

	fncs - https://github.com/GRIDAPPSD/fncs/tree/develop

	gridappsd-docker-build - https://github.com/GRIDAPPSD/gridappsd-docker-build/tree/releases/2020.02.0

	gridlab-d - https://github.com/GRIDAPPSD/gridlab-d/tree/develop

	sample-app - https://github.com/GRIDAPPSD/gridappsd-sample-app/tree/releases/2020.02.0

Version 2020.12.0

	New Features

	Increase AMQ topic permissions for all users until more specific permissions have been defined

	Update configs to support the token based authentication

	Updated to new version of cim2glm

	Updated to support change in goss-core where it makes the decision to use a token in the gossclient a variable that must be set

	Fixed sendError change that hadn’t been updated in ProcessEvent

	Updated log api to include process type

	Viz: Updated to use token-based authentication

	Viz: Added functionality to automatically reconnect to the platform when it is restarted

	Viz: Fixed partial powerflow highlighting of lines

	Viz: Corrected the values of capacitor for open and close

	Source Code

	goss-gridapps-d - https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/tree/releases/2020.12.0

	gridappsd-viz - https://github.com/GRIDAPPSD/gridappsd-viz/tree/releases/2020.12.0

	gridappsd-python - https://github.com/GRIDAPPSD/gridappsd-python/tree/releases/2020.12.0

	cim2glm - https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2020.12.0

	proven-cluster - https://github.com/pnnl/proven-cluster/releases/tag/v1.3.5.7

	proven-client - https://github.com/pnnl/proven-client/releases/tag/v1.3.6

	proven-message - https://github.com/pnnl/proven-message/releases/tag/v1.3.5.4

	proven-docker - https://github.com/GRIDAPPSD/proven-docker/tree/releases/2020.12.0

	fncs - https://github.com/GRIDAPPSD/fncs/tree/develop

	gridappsd-docker-build - https://github.com/GRIDAPPSD/gridappsd-docker-build/tree/releases/2020.12.0

	gridlab-d - https://github.com/GRIDAPPSD/gridlab-d/tree/develop

	sample-app - https://github.com/GRIDAPPSD/gridappsd-sample-app/tree/releases/2020.12.0

Version 2020.11.0

	New Features

	Querying simulation file to use weather data for startime-1 minute

	Moved state-estimator to gridappsd base container

	Integration tests added for APIs

	Viz: Changes made to notifications UI

	Viz: Updated rendering positions for reverse arrows for transformers

	Viz: Added buttons to zoom in and out on plots

	gridappsd-python: Updates made for integration test runs

	Cim2glm: Added repeatable randomization and reusable mRID for houses

	Cim2glm: Saved JSON files with all node coordinates

	Cim2glm: added missing s2 phase

	Cim2glm: Made the SoC meaurement mRID persistent

	Cim2glm: Fixes made for maven builds

	Source Code

	goss-gridapps-d - https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/tree/releases/2020.11.0

	gridappsd-viz - https://github.com/GRIDAPPSD/gridappsd-viz/tree/releases/2020.11.0

	gridappsd-python - https://github.com/GRIDAPPSD/gridappsd-python/tree/releases/2020.11.0

	cim2glm - https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2020.11.0

	proven-cluster - https://github.com/pnnl/proven-cluster/releases/tag/v1.3.5.7

	proven-client - https://github.com/pnnl/proven-client/releases/tag/v1.3.6

	proven-message - https://github.com/pnnl/proven-message/releases/tag/v1.3.5.4

	proven-docker - https://github.com/GRIDAPPSD/proven-docker/tree/releases/2020.11.0

	fncs - https://github.com/GRIDAPPSD/fncs/tree/develop

	gridappsd-docker-build - https://github.com/GRIDAPPSD/gridappsd-docker-build/tree/releases/2020.11.0

	gridlab-d - https://github.com/GRIDAPPSD/gridlab-d/tree/develop

	sample-app - https://github.com/GRIDAPPSD/gridappsd-sample-app/tree/releases/2020.11.0

Version 2020.09.0

	New Features

	Reduced log published based on log level

	Changed default log level to INFO

	Added additional code for SoC measurement translations

	Publishing simulation started message as log level INFO

	Fixed type for SoC measurement translation in fncs bridge.

	Updated proven version for storing simulationid and current time

	Added support for SoC measurement

	Viz: Fixed code that detects whether the response body can be converted to CSV or not

	Viz: Changed how simulation statuses STARTED and PAUSED are detected

	Viz: Add a button to upload simulation configuration object

	Viz: Attaching Magnitude or Angle to plot name if it doesn’t have those suffixes already

	Viz: Rendering min/average/max voltages and load demand plots

	Viz: Rendering power flow direction indicators for edges/switches/capacitors/regulators during a simulation

	Viz: Plotting percentages of nominal voltage by taking the average of Alo and Ahi then divide by sqrt(3)

	Cim2glm: Support added for battery SoC measurement insertion and dictionary

	Cim2glm: Added a query to list XY coordinates for buses

	Cim2glm: Added support to insert synchronous machine

	Cim2glm: Updated cim2glm version to 19.1.1

	GridAPPS-D docker: Updated proven version to 1.3.7

	Source Code

	goss-gridapps-d - https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/tree/releases/2020.09.0

	gridappsd-viz - https://github.com/GRIDAPPSD/gridappsd-viz/tree/releases/2020.09.0

	gridappsd-python - https://github.com/GRIDAPPSD/gridappsd-python/tree/releases/2020.08.0

	cim2glm - https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2020.09.0

	proven-cluster - https://github.com/pnnl/proven-cluster/releases/tag/v1.3.7

	proven-client - https://github.com/pnnl/proven-client/releases/tag/v1.3.7

	proven-message - https://github.com/pnnl/proven-message/releases/tag/v1.3.7

	proven-docker - https://github.com/GRIDAPPSD/proven-docker/tree/releases/2020.09.0

	fncs - https://github.com/GRIDAPPSD/fncs/tree/develop

	gridappsd-docker-build - https://github.com/GRIDAPPSD/gridappsd-docker-build/tree/releases/2020.08.0

	gridlab-d - https://github.com/GRIDAPPSD/gridlab-d/tree/develop

	sample-app - https://github.com/GRIDAPPSD/gridappsd-sample-app/tree/releases/2020.09.0

Version 2020.08.0

	New Features

	Storing alarms data in timeseries data store InfluxDB.

	Converted all simulation id to string

	Updated version of Cim2glm library

	Viz: Upgraded dependency to fix security alert reported by GitHub

	Viz: Added an input box to change the response topic for stomp client UI

	Viz: Implemented expected results view

	Cim2glm: Wrote VLL for primary_voltge and secondary_voltage of 3-phase transformers

	Cim2glm: added bus name and coordinates to the voltage limit dictionary

	Cim2glm: Fixed a case sensitivity for Ubuntu

	Cim2glm: Filled missing coordinates on transactive123. Optimized the XY coordinates in voltage limit dictionary

	Cim2glm: Created script that inserts DER from a text file. Able to insert, drop and re-insert DER

	Cim2glm: Fixed bug in adding a DER terminal with wrong mRID

	Cim2glm: Added documentation to insert DER

	Cim2glm: Fixed the conversion of open switches. Fixed the shorting of fuses

	Cim2glm: Added temporary fix for two-phase transformers that are missing one phase’stransformer code

	Cim2glm: Added method to support buildlimitmaps with just two parameters

	Cim2glm: Added bus name and coordinates to the voltage limit dictionary

	Cim2glm: Fixed capacitor naming - no impact on power flow - previously lines / switches numbered 1-3 but caps numbered 0-2.

	Cim2glm: Renamed Loads.dss to BalancedLoads.dss

	Sample app: Calling get_message function with simulation timesatamp instead of current time.

	Source Code

	goss-gridapps-d - https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/tree/releases/2020.08.0

	gridappsd-viz - https://github.com/GRIDAPPSD/gridappsd-viz/tree/releases/2020.08.0

	gridappsd-python - https://github.com/GRIDAPPSD/gridappsd-python/tree/releases/2020.08.0

	cim2glm - https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2020.08.0

	proven-cluster - https://github.com/pnnl/proven-cluster/releases/tag/v1.3.5.7

	proven-client - https://github.com/pnnl/proven-client/releases/tag/v1.3.6

	proven-message - https://github.com/pnnl/proven-message/releases/tag/v1.3.5.4

	fncs - https://github.com/GRIDAPPSD/fncs/tree/develop

	gridlab-d - https://github.com/GRIDAPPSD/gridlab-d/tree/develop

	sample-app - https://github.com/GRIDAPPSD/gridappsd-sample-app/tree/releases/2020.08.0

Version 2020.07.0

	New Features

	Updated opendss to version 1.2.11

	Added PAUSEd to ProcessStatus list to resolve testing issue.

	Updated TestManager to include comparing expected results between output of 2 simulations.

	Updated TestManager to include comparing currently running simulation to result of previously ran simulation.

	Added a new setting to Viz UI that allows toggling logging.

	Fixed the problem in Viz where unselecting selected services didn’t remove them from the simulation configuration object

	Powergrid model: Bumped mysql-connector-java from 5.1.40 to 8.0.16 in /CIM/cim-parser

	More integration tests added for power grid and simuation API.

	Integration tests added for alarms and timeseries API.

	Source Code

	goss-gridapps-d - https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/tree/releases/2020.07.0

	gridappsd-viz - https://github.com/GRIDAPPSD/gridappsd-viz/tree/releases/2020.07.0

	gridappsd-python - https://github.com/GRIDAPPSD/gridappsd-python/tree/releases/2020.07.0

	cim2glm - https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2020.07.0

	proven-cluster - https://github.com/pnnl/proven-cluster/releases/tag/v1.3.5.7

	proven-client - https://github.com/pnnl/proven-client/releases/tag/v1.3.6

	proven-message - https://github.com/pnnl/proven-message/releases/tag/v1.3.5.4

	proven-docker - https://github.com/GRIDAPPSD/proven-docker/tree/releases/2020.07.0

	fncs - https://github.com/GRIDAPPSD/fncs/tree/develop

	gridappsd-docker-build - https://github.com/GRIDAPPSD/gridappsd-docker-build/tree/releases/2020.07.0

	gridlab-d - https://github.com/GRIDAPPSD/gridlab-d/tree/develop

	sample-app - https://github.com/GRIDAPPSD/gridappsd-sample-app/tree/releases/2020.07.0

Version 2020.05.0

	New Features

	Updated YBus export to include model_id as parameter

	Made changed to work with multiple load profiles measurements in InfluxDB.

	Corrected issue of no player file if schedule name is not passed in request.

	Fix stomp client initialization problem for Viz app on firefox where it was getting stuck in connecting state for a long time.

	Testing summary added to integration testing.

	Integration tests added for power grid and simulation API.

	AWS summary web page added for integration testing report.

	Source Code

	goss-gridapps-d - https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/tree/releases/2020.05.0

	gridappsd-viz - https://github.com/GRIDAPPSD/gridappsd-viz/tree/releases/2020.05.0

	gridappsd-python - https://github.com/GRIDAPPSD/gridappsd-python/tree/releases/2020.05.0

	cim2glm - https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2020.05.0

	proven-cluster - https://github.com/pnnl/proven-cluster/releases/tag/v1.3.5.7

	proven-client - https://github.com/pnnl/proven-client/releases/tag/v1.3.6

	proven-message - https://github.com/pnnl/proven-message/releases/tag/v1.3.5.4

	proven-docker - https://github.com/GRIDAPPSD/proven-docker/tree/releases/2020.05.0

	fncs - https://github.com/GRIDAPPSD/fncs/tree/develop

	gridappsd-docker-build - https://github.com/GRIDAPPSD/gridappsd-docker-build/tree/releases/2020.05.0

	gridlab-d - https://github.com/GRIDAPPSD/gridlab-d/tree/develop

	sample-app - https://github.com/GRIDAPPSD/gridappsd-sample-app/tree/releases/2020.05.0

Version 2020.04.0

	New Features

	Updated Cim2GLM library version to 18.0.3

	Added Configuration handler for generating limits.json file

	Increased web socket message size

	Corrected issue where phase count is incorrect for phase s1, s2 loads

	Corrected json parse method for TimeSeriesRequest class.

	Viz app: Updated to use simulation timestamp for voltage violation instead of current time.

	Viz app: Show “Simulation starting” message before simulation is started and hide the Pause/Stop buttons.

	Powergrid model: Added scripts and *uuid.dat files to maintain persistent mRID values

	Powergrid model: Supporting OverheadLineUnbalanced, ganged regulators and unknown spacings for 1-phase and 2-phase line.

	Integration testing infrastructure create with PyTest and Travis.

	Source Code

	goss-gridapps-d - https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/tree/releases/2020.04.0

	gridappsd-viz - https://github.com/GRIDAPPSD/gridappsd-viz/tree/releases/2020.04.0

	gridappsd-python - https://github.com/GRIDAPPSD/gridappsd-python/tree/releases/2020.04.0

	cim2glm - https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2020.04.0

	proven-cluster - https://github.com/pnnl/proven-cluster/releases/tag/v1.3.5.7

	proven-client - https://github.com/pnnl/proven-client/releases/tag/v1.3.6

	proven-message - https://github.com/pnnl/proven-message/releases/tag/v1.3.5.4

	proven-docker - https://github.com/GRIDAPPSD/proven-docker/tree/releases/2020.04.0

	fncs - https://github.com/GRIDAPPSD/fncs/tree/develop

	gridappsd-docker-build - https://github.com/GRIDAPPSD/gridappsd-docker-build/tree/releases/2020.04.0

	gridlab-d - https://github.com/GRIDAPPSD/gridlab-d/tree/develop

	sample-app - https://github.com/GRIDAPPSD/gridappsd-sample-app/tree/releases/2020.04.0

Version 2020.03.0

	New Features

	Viz app can display lines and nodes with power outage.

	Changes are made in Viz app to start and show data from State Estimator service.

	Viz app can render battery nad solar panel shapes.

	Fixes are made to support no player file in simulation config.

	Timestamp display added for voltage violation on Viz.

	Viz can start and subscribe to State-Estimator service.

	Integration tests created for simulation api.

	Source Code

	goss-gridapps-d - https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/tree/releases/2020.03.0

	gridappsd-viz - https://github.com/GRIDAPPSD/gridappsd-viz/tree/releases/2020.03.0

	gridappsd-python - https://github.com/GRIDAPPSD/gridappsd-python/tree/releases/2020.03.0

	cim2glm - https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2020.03.0

	proven-cluster - https://github.com/pnnl/proven-cluster/releases/tag/v1.3.5.7

	proven-client - https://github.com/pnnl/proven-client/releases/tag/v1.3.6

	proven-message - https://github.com/pnnl/proven-message/releases/tag/v1.3.5.4

	proven-docker - https://github.com/GRIDAPPSD/proven-docker/tree/releases/2020.03.0

	fncs - https://github.com/GRIDAPPSD/fncs/tree/develop

	gridappsd-docker-build - https://github.com/GRIDAPPSD/gridappsd-docker-build/tree/releases/2020.03.0

	gridlab-d - https://github.com/GRIDAPPSD/gridlab-d/tree/develop

	sample-app - https://github.com/GRIDAPPSD/gridappsd-sample-app/tree/releases/2020.03.0

Version 2020.02.0

	New Features

	Alarms status is published as Open/Close instead of 0/1.

	Added resume/pause-at API for simulation.

	Added the EnergyConsumer.p attribute as a writable property in the FNCS GOSS Bridge

	Fixed floating switches issue on Viz app.

	Added units on the plots.

	Viz allow user to go to nodes by clicking on plots.

	Labels added for overlapping line on Viz plots.

	Operator login issue resolved.

	First integration test added in gridappsd-testing repo.

	Source Code

	goss-gridapps-d - https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/tree/releases/2020.02.0

	gridappsd-viz - https://github.com/GRIDAPPSD/gridappsd-viz/tree/releases/2020.02.0

	gridappsd-python - https://github.com/GRIDAPPSD/gridappsd-python/tree/releases/2020.02.0

	cim2glm - https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2020.02.0

	proven-cluster - https://github.com/pnnl/proven-cluster/releases/tag/v1.3.5.7

	proven-client - https://github.com/pnnl/proven-client/releases/tag/v1.3.6

	proven-message - https://github.com/pnnl/proven-message/releases/tag/v1.3.5.4

	proven-docker - https://github.com/GRIDAPPSD/proven-docker/tree/releases/2020.02.0

	fncs - https://github.com/GRIDAPPSD/fncs/tree/develop

	gridappsd-docker-build - https://github.com/GRIDAPPSD/gridappsd-docker-build/tree/releases/2020.02.0

	gridlab-d - https://github.com/GRIDAPPSD/gridlab-d/tree/develop

	sample-app - https://github.com/GRIDAPPSD/gridappsd-sample-app/tree/releases/2020.02.0

Version 2020.01.0

	New Features

	Alarms are varified before publishing.

	Fixed floating switches issue on Viz app.

	Release process documeted at gridappsd-docker-build repository readme

	Created an automated, repeatable way to upload data in blazegraph

	Documented model state update for starting a simulation

	Source Code

	goss-gridapps-d - https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/tree/releases/2020.01.0

	gridappsd-viz - https://github.com/GRIDAPPSD/gridappsd-viz/tree/releases/2020.01.0

	gridappsd-python - https://github.com/GRIDAPPSD/gridappsd-python/tree/releases/2020.01.0

	cim2glm - https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2020.01.0

	proven-cluster - https://github.com/pnnl/proven-cluster/releases/tag/v1.3.5.7

	proven-client - https://github.com/pnnl/proven-client/releases/tag/v1.3.6

	proven-message - https://github.com/pnnl/proven-message/releases/tag/v1.3.5.4

	proven-docker - https://github.com/GRIDAPPSD/proven-docker/tree/releases/2020.01.0

	fncs - https://github.com/GRIDAPPSD/fncs/tree/develop

	gridappsd-docker-build - https://github.com/GRIDAPPSD/gridappsd-docker-build/tree/releases/2020.01.0

	gridlab-d - https://github.com/GRIDAPPSD/gridlab-d/tree/develop

	sample-app - https://github.com/GRIDAPPSD/gridappsd-sample-app/tree/releases/2020.01.0

Version 2019.12.0

	New Features

	Updated and documented MRID UUID generator to ensure compliance with UUID 4

	Integrate DNP3 service with GridAPPS-D container

	Created API to get user role based on login

	Added a user for testmanager to distinguish between simulation commands and alarms

	Removed hardcoded corrdinate identifcation from Viz

	Added capability to change model state before starting a simulation.

	Added feature on UI to upload a file with faults and comunication output

	Created user login page on UI

	Added light/dark toggle themeon UI

	Wrote a SWING_PQ node for each potential island in power grid model.

	Fixed issues for app eveluations as reported by app developers or evluation team

	Updated ci/cd scripts for repositories to support travis.ci updates

	Source Code

	goss-gridapps-d - https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/tree/releases/2019.12.0

	gridappsd-viz - https://github.com/GRIDAPPSD/gridappsd-viz/tree/releases/2019.12.0

	gridappsd-python - https://github.com/GRIDAPPSD/gridappsd-python/tree/releases/2019.12.0

	cim2glm - https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2019.12.0

	proven-cluster - https://github.com/pnnl/proven-cluster/releases/tag/v1.3.5.7

	proven-client - https://github.com/pnnl/proven-client/releases/tag/v1.3.6

	proven-message - https://github.com/pnnl/proven-message/releases/tag/v1.3.5.4

	proven-docker - https://github.com/GRIDAPPSD/proven-docker/tree/releases/2019.12.0

	fncs - https://github.com/GRIDAPPSD/fncs/tree/develop

	gridappsd-docker-build - https://github.com/GRIDAPPSD/gridappsd-docker-build/tree/releases/2019.12.0

	gridlab-d - https://github.com/GRIDAPPSD/gridlab-d/tree/develop

	sample-app - https://github.com/GRIDAPPSD/gridappsd-sample-app/tree/releases/2019.12.0

Version 2019.10.0

	New Features

	Alarms service created. It publishes alarm whenver a switch or capacitor is opened or closed. It is added as a pre-requisite for sample app.

	Load profile data pre-loaded in timeseries data store InfluxDB.

	Load profile file ieeezipload.player is created dynamically based on simulation start time and duration.

	API updated in platform and Proven to query load profile data.

	Timeseries API updated to accept timestamps in seconds instead of micro or nanosecond.

	Timeseries API updated to accept query filters in an array instead of single value.

	Viz app: User can search and highlight objects on network by name and mrid.

	Viz app: User can re-center network graph.

	Viz app: Displays alarms in a saperate tab when simulation is running. Notifies when a new alarm is received in alarm tab.

	Viz app: User can upload scheduled commands json file with communication outage and faults.

	Viz app: Switches are displayed as closed/opened based on simulation output value.

	Viz app: Display image for switches are changes to green/red squares and moved between nodes.

	Bug fixes in DSS configuration.

	GridLAB-D updated to latest develop version.

	OpenDSSCmd updated to 1.2.3.

	Powergrid models - Updated Generator.dss to include kVA for generators.

	Added kva base to glm file, so setting kw=0 does not make the kva base also 0.

	Internal house loads added. Schedule file is created for simulation when useHouses=true.

	Sensor service bugs fixed.

	API added to export Vnom opendss file.

	Source Code

	goss-gridapps-d - https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/tree/releases/2019.10.0

	gridappsd-viz - https://github.com/GRIDAPPSD/gridappsd-viz/tree/releases/2019.10.0

	gridappsd-python - https://github.com/GRIDAPPSD/gridappsd-python/tree/releases/2019.10.0

	cim2glm - https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2019.10.0

	proven-cluster - https://github.com/pnnl/proven-cluster/releases/tag/v1.3.5.7

	proven-client - https://github.com/pnnl/proven-client/releases/tag/v1.3.6

	proven-message - https://github.com/pnnl/proven-message/releases/tag/v1.3.5.4

	proven-docker - https://github.com/GRIDAPPSD/proven-docker/tree/releases/2019.10.0

	fncs - https://github.com/GRIDAPPSD/fncs/tree/develop

	gridappsd-docker-build - https://github.com/GRIDAPPSD/gridappsd-docker-build/tree/releases/2019.10.0

	gridlab-d - https://github.com/GRIDAPPSD/gridlab-d/tree/develop

	sample-app - https://github.com/GRIDAPPSD/gridappsd-sample-app/tree/releases/2019.10.0

Version 2019.09.1

	New Features

	BREAKING CHANGE: Measurements in simulation output message changed from array to dictionary.

	Simulation are now working for 9500 model with houses.

	Added missing measurement in blazegraph for houses.

	Voltage violation service and Viz app updated to work with new simulation output format.

	Faults are working with 9500 model.

	Viz app: User can select services and their input parameters in simulation request form.

	Viz app: Y-axis label corrected if plot value is same during the simulation run.

	Simulation request API updated to take user input parameters for services.

	Timezone corrected for pre-loaded weather data.

	Operational limit set on the power grid models in blazegraph.

	Source Code

	goss-gridapps-d - https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/tree/releases/2019.09.1

	gridappsd-viz - https://github.com/GRIDAPPSD/gridappsd-viz/tree/releases/2019.09.1

	gridappsd-python - https://github.com/GRIDAPPSD/gridappsd-python/tree/releases/2019.09.1

	cim2glm - https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2019.09.1

	proven-cluster - https://github.com/pnnl/proven-cluster/releases/tag/v1.3.5.7

	proven-client - https://github.com/pnnl/proven-client/releases/tag/v1.3.6

	proven-message - https://github.com/pnnl/proven-message/releases/tag/v1.3.5.4

	proven-docker - https://github.com/GRIDAPPSD/proven-docker/tree/releases/2019.09.1

	fncs - https://github.com/GRIDAPPSD/fncs/tree/develop

	gridappsd-docker-build - https://github.com/GRIDAPPSD/gridappsd-docker-build/tree/releases/2019.09.1

	gridlab-d - https://github.com/GRIDAPPSD/gridlab-d/tree/develop

	sample-app - https://github.com/GRIDAPPSD/gridappsd-sample-app/tree/releases/2019.09.1

Version 2019.09.0

	New Features

	Fault Processing: Faults are working on radial feeders.

	Note: Faults are not working on meshed systems. If you have a meshed system then send switch open message to simulate the fault.

	Source Code

	goss-gridapps-d - https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/tree/releases/2019.09.0

	gridappsd-viz - https://github.com/GRIDAPPSD/gridappsd-viz/tree/releases/2019.09.0

	gridappsd-python - https://github.com/GRIDAPPSD/gridappsd-python/tree/releases/2019.09.0

	cim2glm - https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2019.09.0

	proven-cluster - https://github.com/pnnl/proven-cluster/releases/tag/v1.3.5.5

	proven-client - https://github.com/pnnl/proven-client/releases/tag/v1.3.5

	proven-message - https://github.com/pnnl/proven-message/releases/tag/v1.3.5.4

	proven-docker - https://github.com/GRIDAPPSD/proven-docker/tree/releases/2019.09.0

	fncs - https://github.com/GRIDAPPSD/fncs/tree/develop

	gridappsd-docker-build - https://github.com/GRIDAPPSD/gridappsd-docker-build/tree/releases/2019.09.0

	gridlab-d - https://github.com/GRIDAPPSD/gridlab-d/tree/develop

	sample-app - https://github.com/GRIDAPPSD/gridappsd-sample-app/tree/releases/2019.09.0

Version 2019.08.1

	New Features

	Viz: Change simulation pause button to start button when simulation completes.

	Bug fix: Simulation id dropdown is not showing selected id in Browse-data-logs.

	Bug fix: Timeseries queries returning same object multiple times.

	Bug fix: Weather file containes only 10 minute data even if simulation duration is longer.

	Source Code

	goss-gridapps-d - https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/tree/releases/2019.08.1

	gridappsd-viz - https://github.com/GRIDAPPSD/gridappsd-viz/tree/releases/2019.08.1

	gridappsd-python - https://github.com/GRIDAPPSD/gridappsd-python/tree/releases/2019.08.1

	cim2glm - https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2019.08.0

	proven-cluster - https://github.com/pnnl/proven-cluster/releases/tag/v1.3.5.5

	proven-client - https://github.com/pnnl/proven-client/releases/tag/v1.3.5

	proven-message - https://github.com/pnnl/proven-message/releases/tag/v1.3.5.4

	proven-docker - https://github.com/GRIDAPPSD/proven-docker/tree/releases/2019.08.0

	fncs - https://github.com/GRIDAPPSD/fncs/tree/develop

	gridappsd-docker-build - https://github.com/GRIDAPPSD/gridappsd-docker-build/tree/releases/2019.08.1

	gridlab-d - https://github.com/GRIDAPPSD/gridlab-d/tree/develop

	sample-app - https://github.com/GRIDAPPSD/gridappsd-sample-app/tree/releases/2019.08.1

Version 2019.08.0

	New Features

	Viz added capability to select power/voltage/tap measurments for custom plotting

	Control attributes are back for Capacitors

	Added Voltage Violation service that publishes list of measurement ids with per unit voltages that are out of range every 15 minutes

	Viz added display for Voltage Violation service output

	Viz can display Lot/Long coordinated for 9500 node model.

	Breaking Change: JSON format for timeseries query response is flattend out

	Resolved 500 Internal server error for storing simulation input.

	Houses are created and uploaded to Blazegraph for 123 node model

	Additonal column process_type added for logs to distinguish process id for simulation

	Source Code

	goss-gridapps-d - https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/tree/releases/2019.08.0

	gridappsd-viz - https://github.com/GRIDAPPSD/gridappsd-viz/tree/releases/2019.08.0

	gridappsd-python - https://github.com/GRIDAPPSD/gridappsd-python/tree/releases/2019.08.0

	cim2glm - https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2019.08.0

	proven-cluster - https://github.com/pnnl/proven-cluster/releases/tag/v1.3.5.5

	proven-client - https://github.com/pnnl/proven-client/releases/tag/v1.3.5

	proven-message - https://github.com/pnnl/proven-message/releases/tag/v1.3.5.4

	proven-docker - https://github.com/GRIDAPPSD/proven-docker/tree/releases/2019.08.0

	fncs - https://github.com/GRIDAPPSD/fncs/tree/develop

	gridappsd-docker-build - https://github.com/GRIDAPPSD/gridappsd-docker-build/tree/releases/2019.08.0

	gridlab-d - https://github.com/GRIDAPPSD/gridlab-d/tree/develop

	sample-app - https://github.com/GRIDAPPSD/gridappsd-sample-app/tree/releases/2019.08.0

Version 2019.07.0

	Bugs Fixed

	Time series query filter are updated in the API as well documentation.

	Selecting houses is now working with the simulation.

	Following bugs resolved for Viz

	Line name is not based on previously selected values.

	Removing a selected app-name closes input form

	Change Event Id to Event tag

	Change attribute to a multi-value select box

	Help-text ‘Add input item’ does not go away on CommOutage tab

	Object mrid is not correct for multiple phases selection.

	Pos added for load break switches

	New Features

	Platform now stores input and output from services and applications output/input in time series data store.

	Simulation can run with new 9500 node model

	Support for synchronous machines added in CIM model in blazegraph.

	End-to-end fault injecting and processing pipeline is now working.

	Powergrid api added to query object id, object dictionary and object measurements.

	New keys added in glm file to support faults.

	Viz can display plot for new 9500 model.

	Added log api in gridappsd-python

	Measurement for switch positions for all models

	Explicit setting for manual mode in reg and capacitora in the RegulatingControl.mode attribute.

	GridAPPS base constainer has folowwing changes

	Switch to openjdk

	New version of fncs

	CZMQ_VERSION changeed to 4.2.0

	ZMQ_VERSION changes to 4.3.1

	GridLAB-D switched from feature/1146 to develop

	Source Code

	goss-gridapps-d - https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/tree/releases/2019.07.0

	gridappsd-viz - https://github.com/GRIDAPPSD/gridappsd-viz/tree/releases/2019.07.0

	gridappsd-python - https://github.com/GRIDAPPSD/gridappsd-python/tree/releases/2019.07.0

	cim2glm - https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2019.07.0

	proven-cluster - https://github.com/pnnl/proven-cluster/releases/tag/v1.3.5.4

	proven-client - https://github.com/pnnl/proven-client/releases/tag/v1.3.5

	proven-message - https://github.com/pnnl/proven-message/releases/tag/v1.3.5.4

	proven-docker - https://github.com/GRIDAPPSD/proven-docker/tree/releases/2019.06.0

	fncs - https://github.com/GRIDAPPSD/fncs/tree/develop

	gridappsd-docker-build - https://github.com/GRIDAPPSD/gridappsd-docker-build/tree/releases/2019.07.0

	gridlab-d - https://github.com/GRIDAPPSD/gridlab-d/tree/develop

	sample-app - https://github.com/GRIDAPPSD/gridappsd-sample-app/tree/releases/2019.07.0

Version 2019.06.0

	Bugs Fixed

	Updated configuration, power grid model and simulation API for CIM100 and app evaluation features addition.

	All logs are being published to topic instead of queue.

	Fixed TypError bug in gridappsd-sensor-service.

	New Features

	Communication outages: Platform supports input and/or output outage request with simulation for all or some selected power grid components. Outages are initiated and removed at the requested start and end time.

	Fault injection: Platform can receive faults with simulation request and forwards them to co-simulator.

	Viz UI updated: Input form added for communication outage and fault parameter selection. Input form moved from single page to separate tabs.

	CIM version update: Updated CIM version to CIM100. Added support for Recloser and Breaker in model parsing.

	New methods in Python wrapper: Capability added in gridappsd-python to start, stop and run a simulation directly from python using yaml or json.

	Sample app container move to Python 3.6 as default. Updated gridappsd-sample-app to use updated container.

	Debug scripts added: Added scripts in gridappsd-docker to run platform, co-simulator and simulator in separate terminals for debugging purposes.

	Sensor service in available in gridappsd container by default. Sensor service is no longer required to be added in gridappsd container via docker-compose file.

	Default log level is changed from DEBUG to ERROR for limiting the amount of log messages on terminal.

	Breaking API change - Simulation input and output topics changed in gridappsd-python from FNCS_INPUT_TOPIC to SIMULATION_INPUT_TOPIC and FNCS_OUTPUT_TOPIC to SIMULATION_OUTPUT_TOPIC.

	Breaking API change - Simulation request return a json with simulation id and list of events with their uuids instead of just simulation id.

	Documentation

	Using GridAPPS-D documentation section updated for new UI input form with communication outages and faults selection.

	Source Code

	goss-gridapps-d - https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/tree/releases/2019.06.0

	gridappsd-viz - https://github.com/GRIDAPPSD/gridappsd-viz/tree/releases/2019.06.0

	gridappsd-python - https://github.com/GRIDAPPSD/gridappsd-python/tree/releases/2019.06.0

	cim2glm - https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2019.06.0

	proven-cluster - 1.3.4 https://github.com/pnnl/proven-cluster/releases/tag/v1.3.5.3

	proven-client - 1.3.4 https://github.com/pnnl/proven-client/releases/tag/v1.3.4

	proven-message - https://github.com/pnnl/proven-message/releases/tag/v1.3.3

	proven-docker - https://github.com/GRIDAPPSD/proven-docker/tree/releases/2019.06.0

	fncs - https://github.com/GRIDAPPSD/fncs/tree/develop

	gridappsd-docker-build - https://github.com/GRIDAPPSD/gridappsd-docker-build/tree/releases/2019.06.0

	gridlab-d - https://github.com/GRIDAPPSD/gridlab-d/tree/feature/1146

	sample-app - https://github.com/GRIDAPPSD/gridappsd-sample-app/tree/releases/2019.06.0

Version 2019.03.0

	Bugs Fixed

	Sending a command to change set point to the PV inverter has no effect.

	Time series query return no data after simulation run.

	Viz: Switch operations not working on Firefox browser. Time on x-axis on plots is not displayed correctly.

	New Features

	GridAPPS-D – VOLTTRON initial interface created. https://github.com/VOLTTRON/volttron/tree/rabbitmq-volttron/examples/GridAPPS-DAgent

	Fault injection: Simulator can receive faults. Fault schema created in Test Manager. Workflow for fault processing documented on readthedocs.

	Viz: Created menu for capacitors, regulators.

	Proven: Facilitates direct disclosure of JSON messages to Proven via Hazelcast or REST; eliminating need for the proven-message library. Improved throughput and scalability for Proven’s data disclosure component. Disclosed data is now distributed or staged across the cluster to be used by future JET processing pipelines.

	Documentation

	CIM100 documented

	Steps added for creating and testing an application

	Updated documentation on Simulation API

	Source Code

	goss-gridapps-d - https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/tree/releases/2019.03.0

	gridappsd-viz - https://github.com/GRIDAPPSD/gridappsd-viz/tree/releases/2019.03.0

	gridappsd-python - https://github.com/GRIDAPPSD/gridappsd-python/tree/releases/2019.03.0

	cim2glm - https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2019.03.0

	proven-cluster - 1.3.4 https://github.com/pnnl/proven-cluster/releases/tag/v1.3.5.3

	proven-client - 1.3.4 https://github.com/pnnl/proven-client/releases/tag/v1.3.4

	proven-message - https://github.com/pnnl/proven-message/releases/tag/v1.3.3

	proven-docker - https://github.com/GRIDAPPSD/proven-docker/tree/releases/2019.03.0

	fncs - https://github.com/GRIDAPPSD/fncs/tree/develop

	gridappsd-docker-build - https://github.com/GRIDAPPSD/gridappsd-docker-build/tree/releases/2019.03.0

	gridlab-d - https://github.com/GRIDAPPSD/gridlab-d/tree/feature/1146

	sample-app - https://github.com/GRIDAPPSD/gridappsd-sample-app/tree/releases/2019.03.0

Version: 2019.02.0

Release Date: Feb 2019

	Fixed Bugs:

	PROVEN - It can now store simulation input and output which can scale for IEEE8500 model.

	PROVEN - It can store data with real-time simulation run.

	PROVEN - Increased max data limit to unlimited.

	FNCS Goss Bridge - Corrected the timestamp format in simulation logs.

	New Features:

	Viz - User can query log data from MySQL using Viz menu.

	Viz - Added menu to operate switches.

	FNCS GOSS bridge can do execute pause, resume and stop operations for simulation.

	Update PROVEN docker container for automated builds.

	Source Code:

	goss-gridapps-d - https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/tree/releases/2019.02.0

	gridappsd-viz - https://github.com/GRIDAPPSD/gridappsd-viz/tree/releases/2019.02.0

	gridappsd-python - https://github.com/GRIDAPPSD/gridappsd-python/tree/releases/2019.02.0

	cim2glm - https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2019.02.0

	proven-cluster - 1.3.4 https://github.com/pnnl/proven-cluster/releases/tag/v1.3.4

	proven-client - 1.3.4 https://github.com/pnnl/proven-client/releases/tag/v1.3.4

	proven-message - https://github.com/pnnl/proven-message/releases/tag/v1.3.1

	proven-docker - https://github.com/GRIDAPPSD/proven-docker

	fncs - https://github.com/GRIDAPPSD/fncs/tree/develop

	gridappsd-docker-build - https://github.com/GRIDAPPSD/gridappsd-docker-build/tree/releases/2019.02.0

	gridlab-d - https://github.com/GRIDAPPSD/gridlab-d/tree/feature/1146

	sample-app - https://github.com/GRIDAPPSD/gridappsd-sample-app/tree/releases/2019.02.0

	Docker Container:

GridAPPS-D creates and starts following docker containers:

	gridappsd/gridappsd:2019.01.0 - https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/tree/releases/2019.01.0 + proven-client - https://github.com/pnnl/proven-client + cim2glm - https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2019.01.0 + gridappsd/gridappsd-base:master - https://github.com/GRIDAPPSD/gridappsd-docker-build/tree/releases/2019.01.0 + zeromq - http://download.zeromq.org/zeromq-4.0.2.tar.gz + zeromq_czmq - https://archive.org/download/zeromq_czmq_3.0.2/czmq-3.0.2.tar.gz +
activemq - http://mirror.olnevhost.net/pub/apache/activemq/activemq-cpp/3.9.4/activemq-cpp-library-3.9.4-src.tar.gz + fncs - https://github.com/GRIDAPPSD/fncs/tree/develop + gridlab-d - https://github.com/GRIDAPPSD/gridlab-d/tree/feature/1146

	gridappsd/influxdb:2019.01.0 - https://github.com/GRIDAPPSD/gridappsd-data/tree/releases/2019.01.0 + influxdb:latest - https://hub.docker.com/_/influxdb

	gridappsd/blazegraph - https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2019.01.0 + lyrasis/lbazegraph:2.1.4 - https://hub.docker.com/r/lyrasis/blazegraph

	gridappsd/proven - https://github.com/GRIDAPPSD/proven-docker + proven-cluster - https://github.com/pnnl/proven-cluster/tree/v1.3.3 + proven-message - https://github.com/pnnl/proven-message/tree/v1.3.1

	gridappsd/sample-app - https://github.com/GRIDAPPSD/gridappsd-sample-app/tree/releases/2019.01.0 + gridappsd/app-container-base - (TODO: @Craig can you provide the repository?)

	gridappsd/viz:2019.01.0 - https://github.com/GRIDAPPSD/gridappsd-viz/tree/releases/2019.01.0

	redis:3.2.11-alpine - https://hub.docker.com/_/redis

	mysql/mysql-server:5.7 - https://hub.docker.com/_/mysql

Version: 2019.01.0

Release Date: January 2019

	Platform updates:

	Simulation can run as fast as possible as well as real-time (every 3 seconds)

	Simulation can run with houses if present in the model.

	Following components can be controlled while the simulation is running:

	Open or close capacitors

	Open or close switches

	Change tap setting for regulators

	Changing control modes for regulators

	Change inverter P & Q output

	Set control modes for regulators and capacitors

	Simulation request creates the input weather file.

	gridappsd-python:

	cim2glm:

	Optional house cooling load components

	Single-phase power electronics and fuse ratings

	Inverter parameters changed from rotating machines to power electronics

	Solar and storage

	Measurements exported to the circuit metadata (JSON file); SimObject identifies the corresponding GridLAB-D object

	Supplemental scripts to populate feeder with measurements and houses

	Rotating machines, only parameters essential for the UAF lab microgrid

	In GridLAB-D export of loads, each node or triplex_node will have separate submeters for houses, PV inverters, battery inverters and rotating machines, i.e., not patterned after net metering

	Data updates:

2.1 Power grid models:

	Power grid models are stored in blazegraph database in its own docker container.

	Following models are pre-loaded

	EPRI_DPV_J1

	IEEE123

	IEEE13

	R2_12_47_2

	IEEE8500

	IEEE123_pv

	User can upload customized model

2.2 Weather:

	Weather data in stored in InfluxDB using Proven.

	InfluxDB has its own docker container with pre-loaded weather data.

	API added to query weather data.

	Feature added to create weather file for a simulation

	Details of pre-loaded weather data in current release

2.3 Simulation Input

	Simulation input commands sent by applications/services are stored in InfluxDB using Proven.

	API added to query input data.

2.4 Simulation Output

	Output from simulator is stored in InfluxDB using Proven.

	API added to query output data.

2.5 Logs

	API added for query based on pre-defined filters or custom SQL string.

	Changed logs to have epoch time format.

	Applications and Services:

3.1 Viz

	User can select to run simulation at real-time or as fast as possible

	User can select to add houses in the simulation

	User can open or close switches and capacitors by clocking on them

	Cleaner display of log messages while simulation is running

	User can query simulation logs after simulation is done.

	Toggle switches open/close

	Querying logs through Viz (still working on this)

	Bug fixes

	fixed the stomp client in Viz,

	added missing capacitor labels

	redirect non-root urls to root (localhost:8080)

3.2 Sample application:

	Source code at https://github.com/GRIDAPPSD/gridappsd-sample-app

	Sample app runs in its own container

	Register with gridapps-d platform when platform start.

	Re-register automatically if platform restart.

	Redundant log messages removed.

	Works with user selected model instead of hard-coded ones.

	Source Code:

	goss-gridapps-d - https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/tree/releases/2019.01.0

	gridappsd-viz - https://github.com/GRIDAPPSD/gridappsd-viz/tree/releases/2019.01.0

	gridappsd-python - https://github.com/GRIDAPPSD/gridappsd-python/tree/releases/2019.01.0

	cim2glm - https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2019.01.0

	proven-cluster - https://github.com/pnnl/proven-cluster (@Eric: link for release branches)

	proven-docker - https://github.com/GRIDAPPSD/proven-docker

	proven-client - https://github.com/pnnl/proven-client

	proven-message - https://github.com/pnnl/proven-message

	fncs - https://github.com/GRIDAPPSD/fncs/tree/develop

	gridappsd-docker-build - https://github.com/GRIDAPPSD/gridappsd-docker-build/tree/releases/2019.01.0

	gridlab-d - https://github.com/GRIDAPPSD/gridlab-d/tree/feature/1146

	sample-app https://github.com/GRIDAPPSD/gridappsd-sample-app/tree/releases/2019.01.0

	Docker Container:

GridAPPS-D creates and starts following docker containers:

	gridappsd/gridappsd:2019.01.0 - https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/tree/releases/2019.01.0

	proven-client - https://github.com/pnnl/proven-client

	cim2glm - https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2019.01.0

	gridappsd/gridappsd-base:master - https://github.com/GRIDAPPSD/gridappsd-docker-build/tree/releases/2019.01.0

	zeromq - http://download.zeromq.org/zeromq-4.0.2.tar.gz

	zeromq_czmq - https://archive.org/download/zeromq_czmq_3.0.2/czmq-3.0.2.tar.gz

	activemq - http://mirror.olnevhost.net/pub/apache/activemq/activemq-cpp/3.9.4/activemq-cpp-library-3.9.4-src.tar.gz

	fncs - https://github.com/GRIDAPPSD/fncs/tree/develop

	gridlab-d - https://github.com/GRIDAPPSD/gridlab-d/tree/feature/1146

	gridappsd/influxdb:2019.01.0 - https://github.com/GRIDAPPSD/gridappsd-data/tree/releases/2019.01.0

	influxdb:latest - https://hub.docker.com/_/influxdb

	gridappsd/blazegraph - https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2019.01.0

	lyrasis/lbazegraph:2.1.4 - https://hub.docker.com/r/lyrasis/blazegraph

	gridappsd/proven - https://github.com/GRIDAPPSD/proven-docker

	proven-cluster - https://github.com/pnnl/proven-cluster/tree/v1.3.3

	proven-message - https://github.com/pnnl/proven-message/tree/v1.3.1

	gridappsd/sample-app - https://github.com/GRIDAPPSD/gridappsd-sample-app/tree/releases/2019.01.0

	gridappsd/app-container-base - (TODO: @Craig can you provide the repository?)

	gridappsd/viz:2019.01.0 - https://github.com/GRIDAPPSD/gridappsd-viz/tree/releases/2019.01.0

	redis:3.2.11-alpine - https://hub.docker.com/_/redis

	mysql/mysql-server:5.7 - https://hub.docker.com/_/mysql

|GridAPPS-D_narrow.png|

Known VPN and Proxy Issues

There are a few known issues around WSL2 and Virtualbox VM compatibility with corporate VPNs and proxies.

DNS Configuration

This issue affects the ability of the VM to reach GitHub, clone repositories, run pip install or open any websites from the browser.

If your machine was connected to a corporate VPN during setup, the Doman Name Server (DNS) lookup address is set to that of your corporate intranet. To reset it, open an ubuntu session and edit the resolv.conf file

	sudo nano /etc/resolv.conf

	comment out existing nameserver address

	add new line with nameserver 8.8.8.8

	save file and restart terminal

Proxy Server Configuration

This issue affects the ability of the server to run curl and other commands addressing various localhost ports

To fix this, add the NO_PROXY option by running in the Ubuntu command line

export NO_PROXY="localhost,127.0.0.1,local.home,*.yourcompany.org,*.yourintranet.org"

Note: Be sure to change the proxy URLs to those of your organization.

[image: gridappsd-logo]

Eclipse IDE Setup

The Eclipse environment is used for platform development and editing of the internal GridAPPS-D Java code used by GOSS-GridAPPSD and other platform packages.

Application developers do not need to set up this environment

	Download or clone the repository from github

	Install github desktop [https://desktop.github.com/] or sourcetree [https://www.atlassian.com/software/sourcetree/overview]

	Clone the GOSS-GridAPPS-D repository [https://github.com/GRIDAPPSD/GOSS-GridAPPS-D] or download the GOSS-GridAPPS-D source [https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/archive/master.zip]

	Install java 1.8 SDK and set JAVA_HOME variable

	Install Eclipse http://www.eclipse.org/downloads/packages/release/Mars/1 (Mars 4.5.1 or earlier, 4.5.2 appears to have bugs related to bundle processing) TODO what about neon?

	Open eclipse with workspace set to GOSS-GridAPPS-D download location, eg. C:UsersusernameDocumentsGOSS-GridAPPS-D

	Install BNDTools plugin: Help->Install New Software->Work with: http://dl.bintray.com/bndtools/bndtools/3.0.0 and Install Bndtools 3.0.0 or earlier

	Import projects into workspace

	File->Import General->Existing Projects into workspace

	Select root directory, GOSS-GridAPPS-D download location

	Select cnf, pnnl.goss.gridappsd

	If errors are detected, Right click on the pnnl.goss.gridappsd project and select release, then release all bundles

	If you would like to you a local version of GOSS-Core (Optional)

	Update cnf/ext/repositories.bnd

	Select source view and add the following as the first line

	aQute.bnd.deployer.repository.LocalIndexedRepo;name=GOSS Local Release;local=/GOSS-Core2/cnf/releaserepo;pretty=true,

	verify by switching to bndtools and verify that there are packages under GOSS Local Relase

	Open pnnl.goss.gridappsd/bnd.bnd, Rebuild project, you should not have errors

	Open pnnl.goss.gridappsd/run.bnd.bndrun and click Run OSGI

[image: gridappsd-logo]

GridAPPS-D Introduction

What is GridAPPS-D?

GridAPPS-D™ is an open-source platform that accelerates development and deployment of portable applications for advanced distribution management and operations. It is built in a linux environment using Docker, which allows large software packages to be distributed as containers.

The GridAPPS-D™ project is sponsored by the U.S. DOE’s Office of Electricity, Advanced Grid Research. Its purpose is to reduce the time and cost to integrate advanced functionality into distribution operations, to create a more reliable and resilient grid.

GridAPPS-D enables standardization of data models, programming interfaces, and the data exchange interfaces for:

	devices in the field

	distributed apps in the systems

	applications in the control room

The platform provides

	robust testing tools for applications

	distribution system simulation capabilities

	standardized research capability

	reference architecture for the industry

	application development kit

GridAPPS-D Platform Characteristics

Vendor / Vendor Platform Independent

The GridAPPS-D Platform and application development environment is independent of any specific vendor or vendor platform, in other words vendor neutral. The results of this effort are intended to be useful and available to any vendor or application developer who wishes to apply them or incorporate them into existing or future products.

Standards-based Architecture

GridAPPS-D is the first platform for energy and distribution management systems that is designed with standards for data integration, including data models, programming interfaces, and data exchange interfaces between grid devices in the field, distributed applications in utility systems, and applications in utility control rooms. This means that the applications developed using GridAPPS-D make them broadly applicable and interchangeable across utility systems, reducing the cost and time for
utilities to integrate new functionality.

To the greatest extent possible, the GridAPPS-D Platform incorporates and supports industry standards, in particular interoperability standards, including the power system model representation using the Common Information Model (CIM), specifically IEC 61970 & IEC 61968, and communications with other platforms / physical equipment through DNP3, IEEE 2030.5, and the open field messaging bus (OpenFMB)

Replicable

As a reference implementation of a standards-based architecture, advanced applications and services developed with GridAPPS-D Platform should be replicable, with the ability to be deployed at multiple locations on different distribution feeders with almost no code customization.

Flexible Distribution Simulation

The GridAPPS-D Platform enables users to run real-time quasi-static simulations of large distribution network models with real-time load data, thermal co-simulation of houses, real-time weather data, and real-time operation of switches, DERs, and volt-var control equipment. The platform supports multiple distribution simulators through a co-simulation bridge that abstracts the simulation configuration details to a simple API.

Data Representation & Management

A key to GridAPPS-D is providing the distribution system application developer with a standardized approach to integrate data. The intent is to allow the developers to make logical references to data, referencing standardized data models and interfaces, without concerning for the data is physically made available. This standardized, logical data interface is based on existing standards to the best known extent.

Standards-based Data Representation

The Common Information Model (CIM), specifically packages defined in IEC 61970 and IEC 61968 series of standards, is used for all power system models, which enables rapid exchange of power system models across compliant applications and services. Using the set of standardized model queries provided by the PowerGrid Models API, a GridAPPS-D application is able to scale seamlessly across different network models with no modifications to the application code.

Standards-based Data Interfaces

The GridAPPS-D Platform and GridAPPS-D APIs provide a standardized method for interfacing with power system modelling data, real-time simulation data, historical data, and logging informaton. Each of these APIs abstracts the specifics of the database, and enable simple queries through a set of standardized messages formatted as JSON strings.

Data Translation to Non-standardized Elements

CIM Hub and the Configuration File API allow conversion of the power system model data from the standards-based CIM RDF/XML (extensible markup language) format ,used by the GridAPPS-D Platform, to model formats used by other software packages, such as GridLAB-D and OpenDSS. This model conversion process can be performed with a simple set of standardized API calls.

Available Distribution Feeders

The GridAPPS-D platform comes pre-configured with a combination of IEEE Test Feeders, PNNL Taxanomoy feeders, and other realistic synthetic models. Additional models and actual utility feeder data can be uploaded easily as CIM XML files into the GridAPPS-D Platform, which can then be used for application testing and real-time simulation.

Real-Time Distribution Simulation

The GridAPPS-D Platform inlcudes a robust real-time distribution simulator with comparable capabilities to a Dispatcher Training Simulator. This environment enables application developers to test algorithms and application code on both the standard realistic sythetic feeders pre-configured in the GridAPPS-D Platform download and any other power system models that the user can upload through the CIM Hub package.

The distribution simulator is the source of data to the distribution system application developer enabling them to evaluate the performance of their application with ideal or realistic noisy data under different operating and performance conditions.

The GridAPPS-D platform currently supports only quasi-static simulation (i.e. simulation of electromechanical / electromagnetic transients, variable microgrid island frequency, synchro-check relays, etc. are not supported currently). These types of simulations can be performed with GridLAB-D outside of the the GridAPPS-D Platform and application development environment.

Real-Time & Faster-than-Real-Time Simulation

Simulations can be run in two modes:

	Real-time mode: one second of computer clock time corresponds to one second of simulation time. The GridAPPS-D Platform runs the simulation in each time and publishes simulation data and sensor measurements every three seconds.

	Faster-than-real-time mode: The GridAPPS-D runs the simulation as fast as possible and does not wait for three seconds of computer clock time to pass before it publishes the simulation data from the current time step. This mode is very useful for creating historical training data sets for AI/ML applications.

Controllable Power System Equipment

All of the power system equipment can be controlled in real-time through the Simulation API, allowing applications to open/close switches, dispatch DGs / DERs, adjust setpoints of rooftop PV, adjust regulator taps, and turn capacitor banks on or off.

Noisy / Bad Data Injection & Communication Failures

The GridAPPS-D Platform supports the Sensor Simulator Service, which is able to inject noise, bad measurements, and data packet losses into the simulation output. The frequency at which sensors publish can also be adjusted and aggregated, allowing realistic representation of real sensors, such as AMI meters that publish data every 15 minutes, rather than at each simulation time step. This allows the user to train and evaluate applications with realistic measurement for meters and sensors, rather
than “pure” data created by the power flow solver.

The GridAPPS-D Platform also supports simulation of communication failures through the Test Manager during which data is not received from sensors, control commands are delivered to selected equipment, or both. This enables application developers to test algorithm performance under realistic conditions, during which physical equipment might not respond to control commands.

Reconfigurable Power System Topologies

The GridAPPS-D Platform supports simulation of both meshed and radial power system topologies, as well as reconfiguration of the power system network in real-time by opening / closing / tripping of various switching devices, such as breakers, reclosers, sectionalizers, and fuses. These switches can be controlled by an application through the Simulation API or through the GridAPPS-D Viz GUI

Real-Time Simulation Visualization

The GridAPPS-D Platform includes the Viz GUI application, which presents a simple graphic user interfaces with some of the basic functionalities found in an Dispatcher Training Simulator, inlcuding a one-line diagram of the feeder, colorized switch positions, outage locations, alarm messages, and customizable stripcharts of power flow, node voltage, and tap position.

Using the GridAPPS-D Platform

GridAPPS-D currently runs in a Linux virtual machine (VM). Although it can be built from sources, the primary form of distribution is as a set of Docker containers. Users can install the Docker infrastructure on their computer and then download the Docker containers. Several platform usage scenarios are then feasible:

	Start and run the application through its browser interface. Utilities could use the platform this way to evaluate new applications, or to evaluate applications on their own circuits. The App Hosting Manager allows a user to install and configure new applications to run in the platform, by modifying configuration files but without having to write new code. GridAPPS-D will also be able to ingest any distribution circuit provided in CIM format.

	Write scripted scenarios and responses using the Test Manager, and run those through GridAPPS-D. This mode can be used for a more rigorous evaluation, and also for operator training.

	Write a new application, using one of the open-source examples as a template. This mode should provide a faster on-ramp for application developers to develop a standards-compliant product.

	DMS vendors can use the platform to develop and test their own standards-compliant interfaces. Any GridAPPS-D code may be incorporated into a commercial product, pursuant to its BSD license terms. The goal is for an application to be deployable from one platform to another, simply by moving the program file(s) and updating local configuration files.

[image: GridAPPS-D-narrow.png]

GridAPPS-D Architecture

GridAPPS-D Architecture

GridAPPS-D offers a standards-based, open-source platform that enables rapid integration of advanced applications and services through a robust application programming interface (API).

The architecture of the development ecosystem is illustrated below.

[image: GridAPPS-D%20architecture%20%281%29.png]

GridAPPS-D User Roles

The GridAPPS-D platform contains several user roles with different permissions.

Currently, the permission are only implemented in the GridAPPS-D Viz. The permissions will be extended to platform authentication and API call execution in a future release.

The user roles can be associated with individual username/password logins. These are located in the GOSS core security configuration file [https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/blob/master/gov.pnnl.goss.gridappsd/conf/pnnl.goss.core.security.userfile.cfg]

	Admin

	This role is used by internal GridAPPS-D Platform functionalities.

	All permissions are granted, inlcuding

	Starting, pausing, stopping, and joining simulations

	Registering / deleting applications and services

	Publishing and subscribing to all API communication channels

	All Viz tools (Simulation Control, STOMP Client, Data Comparison, Data Browser, Application Viewer)

	Managing users (future release)

	Managing permissions of applications and services (future release)

	Evaluator

	This role is used by observers of application evaluation activities

	Permissions inlcude

	Joining existing simulations

	STOMP Client, Data Comparison, Data Browser

	Operator

	This role is used by operators for application evaluation activities

	Permissions inlcude

	Joining existing simulations

	STOMP Client, Data Comparison, Data Browser

	Test Manager

	This role is used to create simulations with TestManager events

	Permissions inlcude

	Starting, pausing, stopping, and joining simulations

	All Viz tools (Simulation Control, STOMP Client, Data Comparison, Data Browser, Application Viewer)

	Application

	This role is used by applications to authenticate with the GridAPPS-D Platform

	Permissions inlcude

	Controlling parallel simulations through Simulation API

	Publishing and subscribing to all API communication channels

	Service

	This role is used by services to authenticate with the GridAPPS-D Platform

	Permissions inlcude

	Controlling parallel simulations through Simulation API

	Publishing and subscribing to all API communication channels

Integration with External Vendor Systems

External vendor systems are able to interface with GridAPPS-D compliant applications and services through two means.

The first is direct integration through the standards-based API and message bus. This enables products that comply with the GridAPPS-D™ platform to * reduce utility time and cost to integrate new functionality * give utilities more choice in technology providers * scale up or down for any size utility * expand market opportunities for developers and vendors

The second method is through the standards-based services, such as the DNP3 service, IEEE 2030.5 service, etc. that enable communication between GridAPPS-D compliant applications and external vendor systems through SCADA and other control center protocols.

GridAPPS-D Applications

The GridAPPS-D platform and API enable rapid development of advanced power applications that are able to operate in a real-time environment and interface with external software and systems. Multiple power applications have already been developed on the platform, including

	Volt-Var Optimization (VVO)

	Fault Location Isolation and Service Restoration (FLISR)

	Distributed Energy Resource Dispatch and Management (DERMS)

	Solar Forecasting, Load Forecasting, etc.

	and more

Applications can be containerized in Docker for direct integration into the platform or interface through the API. Applications can be written in any programming language, but API libraries are currently available in only Python and Java.

GridAPPS-D Services

The GridAPPS-D platform can host a multitude of services for processing both real-time simulation and control center data. These services can be called by any application through the GridAPPS-D API.

Some of the available services include

	State Estimator

	Sensor Simulator

	Alarm Service

	DNP3 Protocol Service

	IEEE 2030.5 Protocol Service

GridAPPS-D Application Programming Interface

GridAPPS-D offers a unique standards-based application programming interface (API) that will be the focus of the lessons in this set of tutorials. The API enables any application, service, or external vendor product to interface with each other, access control center data, run a real-time simulation, and issue equipment control commands.

GridAPPS-D has several APIs to serve different needs and objectives, inlcuding * Powergrid Models API – Allows apps and services to access the power system model data * Configuration File API – Allows apps to set equipment statuses and system conditions * Simulation API – Allows apps to start a real-time simulation and issue equipment commands * Timeseries API – Allows apps to pull real-time and historical data * Logging API – Allows apps to access logs and publish
log messages

Additional APIs are currently under development to enable communication and control of field devices, as well as cyber-physical network co-simulation.

GOSS Message Bus

One of the unique features of GridAPPS-D is the GOSS Message Bus, which enables integration and communication between applications, services, and external software on a publish-subscribe basis.

The GridAPPS-D platform publishes SCADA and simulation data, alarms, and other real-time data. Applications subscribe to the types of messages relevant to their objectives and publish equipment commands and control settings.

GridAPPS-D Core Services

“Under the hood” of the GridAPPS-D platform are the core services and managers.

An application developer should not need a detailed understanding of the core services, as all interaction is performed through the various APIs, which will be dicussed in detail in the upcoming tutorial lessons.

The core services provide the key functionality offered by the GridAPPS-D platform, inlcuding database access, processing API calls, handling equipment commands, and running simulations.

Some of the core services included in the GridAPPS-D platform are * Platform Manager – Coordinates all of the other managers * Process Manager – Coordinates platform component interactions * Application Manager – Manages application registration, execution, and status reporting * Configuration Manager – Manages the setup and configuration of real-time simulations * Simulation Manager – Allows users and apps to create, start, stop, and pause co-simulations * Data
Manager – Coordinates the integrated repository of model, timeseries data, and metadata * Model Manager – Loads and checks CIM-based power system models * Logging Manager – Supports logging for application development and execution * Services Manager – Coordinates all services available for users and apps * Test Manager – Enables creation of simulation events, faults, and network outages

Co-Simulation Framework

The co-simulation framework serves as the simulation context for the rest of GridAPPS-D. When a simulation is requested through the GridAPPS-D plaform the simulation manager instantiates a FNCS or HELICS co-simulation federation consisting of two applications. The first application is a powerflow simulator which can be either GridLAB-D or OpenDSS that simulates real world distribution feeder or feeders. The second is a custom application that serves as bridge between the FNCS/HELICS message bus
and the GOSS message bus. The data that travels between the co-simulation federation and the rest of the platform are SCADA measurement, SCADA control, and simulation status and control messages.The bridge application subscribes to the simulation input topic to recieve any SCADA control, simulation control, and simulation event messages. The bridge forwards SCADA control commands and simulation events like faults and outages to the powerflow simulator. The bridge publishes SCADA measurements
from the powerflow simulator on a simulation output topic that GridAPPS-D applications and other parts of the GridAPPS-D platform subscribe to.

Database Structures

Default installation of GridAPPS-D comes with following data stores:

	MySQL: It is used to store log data from platform, applications and services. For details, please see Logging API, which is covered in detail in Lesson 2.7.

	Blazegraph: It is used to store power grid model data. The data contains equipments, properties and their initial measurement values. It is a triplestore that supports complex graph representation and class structure for CIM standard data model.

	InfluxDB: InfluxDB is a time series data store and is used to store simulation output, simulation input, weather and load data. It also store output from services line sensor service and alarms service. For the purposes of the GridAPPS-D project, InfluxDB is managed by Proven. Proven is a database software suite supporting disclosure, collection, and management of modeling and simulation data.

For the purpose of developing applications, the data stores used should be transparent to the application as long the data model and standardized API is used.

[image: gridappsd-logo]

GridAPPS-D Python Library

Intro to GridAPPSD-Python

GridAPPSD-Python is a Python library that wraps API calls and passes them to the various GridAPPS-D APIs through the GOSS Message Bus.

The library has numerous shortcuts to help you develop applications faster and interface them with other applications, services, and GridAPPS-D compatible software packages.

The GridAPPSD-Python library requires a python version >= 3.6 and < 4 in order to work properly. (Note: no testing has been done with python 4 to date).

The GridAPPSD-Python library can be installed using pip install gridappsd-python.

For more information, see the GridAPPSD-Python GitHub Repo [https://github.com/GRIDAPPSD/gridappsd-python] and PyPi site [https://pypi.org/project/gridappsd-python/].

Connecting to GridAPPS-D Platform

Before starting any development in the GridAPPS-D environment, it is necessary to establish a connection to the GridAPPS-D Platform.

Specifying Environment Variables (Preferred)

The preferred method for establishing a connection with the GridAPPS-D Platform is to define a set of environment variables that specify the connection address, port, username, and password.

Specifying the Environment Variables in Python Script

This method is recommended for initial application development when running in a development environment, such as PyCharm or the Jupyter Notebook tutorials.

[]:

Establish connection to GridAPPS-D Platform:
from gridappsd import GridAPPSD

import os # Set username and password
os.environ['GRIDAPPSD_USER'] = 'tutorial_user'
os.environ['GRIDAPPSD_PASSWORD'] = '12345!'
os.environ['GRIDAPPSD_ADDRESS'] = 'localhost'
os.environ['GRIDAPPSD_PORT'] = '61613'

Connect to GridAPPS-D Platform
gapps = GridAPPSD()
assert gapps.connected

Specifying the Environment Variable in ~/.bashrc Script

This method is recommended for more complete applications scripts where all the application scripts are called from a single ~/.bashrc script. In that script, the environment variables can be defined and then will be available to all scripts that need to connect the GridAPPS-D Platform.

export allows all processes started by this shell to have access to the global variable

address where the gridappsd server is running - default localhost
export GRIDAPPSD_ADDRESS=localhost

port to connect to on the gridappsd server (the stomp client port)
export GRIDAPPSD_PORT=61613

username to connect to the gridappsd server
export GRIDAPPSD_USER=app_user

password to connect to the gridappsd server
export GRIDAPPSD_PASSWORD=1234App

Note these should be changed on the server in a cyber secure environment!

Specifying Connection Parameters Manually

An older method of connecting to the GridAPPS-D Platform is manually specifying the connection parameters. This method is still supported, but may be deprecated in future releases.

This method is less flexible and has an in-built portability issues associated with hard-coded platform passwords.

[]:

gapps = GridAPPSD("('localhost', 61613)", username='system', password='manager')

GridAPPSD-utils Deprecated

GridAPPS-D Platform releases prior to 2021 used a library called utils to establish a connection with the platform. This library has been deprecated and replaced with Java Token Authentication using the environment variable method shown above.

The authentication method below will work with 2019-2020 versions of the GridAPPS-D Platform and GridAPPSD-Python, but not with any newer releases.

DEPRECATED authentication method
from gridappsd import GridAPPSD, utils
gapps = GridAPPSD(address=utils.get_gridappsd_address(),
 username=utils.get_gridappsd_user(), password=utils.get_gridappsd_pass())

utils – DEPRECATED A set of utilities to assist with common commands, inlcuding

	utils.validate_gridappsd_uri() – Checks if GridAPPS-D is hosted on the correct port

	utils.get_gridappsd_address() – Returns the platform address such that response can be passed directly to a socket or the STOMP library

	utils.get_gridappsd_user() – Returns the login username

	utils.get_gridappsd_pass() – Returns the login password

	utils.get_gridappsd_application_id() – Only applicable if the environment variable ‘GRIDAPPSD_APPLICATION_ID’ has been set

	utils.get_gridappsd_simulation_id() – Retrieves the simulation id from the environment.

It is strongly recommended that applications that previously used this method replace any connection objects with environment variables to ensure compatibility with subsequent releases of the GRIDAPPS-D platform

Passing API calls with GridAPPSD-Python

There are three methods used in GridAPPSD-Python Library to pass API calls to the GridAPPS-D platform:

	.get_response(self, topic, message, timeout) – Pass a database query, response expected before timeout

	.subscribe(self, topic, callback) – Subscribe to a data stream

	.send(self, topic, message) – Send a command to a simulation, no response expected

Each are explained in more detail below

.get_response(topic, message)

This is the most commonly used method for passing API calls to the GridAPPS-D Platform. This method is used when a response is expected back from the GridAPPS-D platform within a particular timeout period. It is used for all database queries using

	PowerGrid Models API – queries for model info, object mRIDs, measurement mRIDs

	Configuration File API – queries to convert the model into other file format versions

	Timeseries API – queries for weather data and historical data from prior simulations

The syntax used when calling this method is gapps.get_response(topic, message) or alternatively, gapps.get_response(topic, message, timeout = 30), where

	topic is the GridAPPS-D topic for the particular API (as described in API Communication Channels.

	message is the query message specifying what information the API should return

	timeout = is optional and gives the number of seconds given for the API to respond. Model conversion queries using the Configuration File API may take 30 - 60 seconds for very large models. Most other queries do not need a timeout specification.

.subscribe(topic, message)

This method is used for subscribing to the real-time data stream generated by the GridAPPS-D platform while running a simulation. It is used to subscribe to information published at each time step by the

	Simulation API – simulated SCADA data and measurements created by the simulation

	Logging API – log messages published by the Platform, applications, and simulation

The .subscribe()method is also used to subscribe to streaming data generated by some of the GridAPPS-D services.

The syntax used when calling this method is gapps.subscribe(topic, message), where

	topic is the GridAPPS-D simulation output topic, log output topic, or service output topic for the particular real-time data stream the application needs to subscribe to, (as described in API Communication Channels.

	message is the subscription message. For simulation and log outputs, it is a method or class definition, as described in Comparison of Subscription Approaches.

.send(topic, message)

This method is used for sending equipment command and simulation input messages to the GridAPPS-D platform while running a simulation. It is used to send difference messages to the Simulation API and for other generic publishing needs, such as sending a command input to a GridAPPS-D Service.

The syntax used when calling this method is gapps.send(topic, message), where

	topic is the simulation or service input topic(as described in API Communication Channels.

	message is the API call message to be published. The most commonly used simulation input message is a Difference Message used to control equipment settings.

.unsubscribe(conn_id)

This method is used to unsubscribe from a simulation or service that was previously subscribed to using the .subscribe method.

The syntax of this method is gapps.unsubscribe(conn_id), where conn_id is the connection id obtained when previously subscribing using the conn_id = gapps.subscribe(topic, message).

Importing Required Python Libraries

A typical GridAPPS-D application will require several libraries to be imported from GridAPPSD-Python as well as from other Python libraries.

Required GridAPPS-D Libraries

The GridAPPS-Python API contains several libraries, which are used to query for information, subscribe to measurements, and publish commands to the GOSS message bus. These inlcude

	GridAPPSD – This is the primary library that contains numerous methods for passing API calls, connecting to the GridAPPS-D platform, and other common tasks

	topics – This library contains methods for constructing the correct API channel strings

	Simulation – This library contains shortcut methods for subscribing and controlling simulations

	Logger – This library contains logging methods. It is recommended to invoke those methods using the gapps.get_logger method rather than importing the library

	GOSS – This library contains methods for passing API calls to the GOSS Message Bus. It is imported automatically when importing the GridAPPSD library

	Houses – This library populates a feeder with thermal house model loads. It is imported automatically when importing the GridAPPS library

	utils – Deprecated

Each of the libraries can be imported using from gridappsd import library_name. For example,

[]:

from gridappsd import GridAPPSD

[]:

from gridappsd import topics as t

Each of the libraries are discussed in detail in the next section.

Other Required Python Libraries

Below is a list of some of the additional libraries that you may need to import.

You may not need all of these additional libraries, depending on the needs of your application

	argparse – This is the recommended command-line parsing module in Python.(Online Documentation [https://docs.python.org/3/howto/argparse.html])

	json – Encoder and decoder for JavaScript Object Notation (JSON). (Online Documentation [https://docs.python.org/3/library/json.html])

	logging – This module defines classes and functions for event logging. (Online Documentation [https://docs.python.org/3/library/logging.html]

	sys – Python module for system specific parameters. (Online Documentation [https://docs.python.org/3/library/sys.html])

	time – Time access and conversions. (Online Documentation [https://docs.python.org/3/library/time.html])

	pytz – Library to enable resolution of cross-platform time zones and ambiguous times. (Online Documentation [https://pypi.org/project/pytz/]

	stomp – Python client for accessing messaging servers using the Simple Text Oriented Messaging Protocol (STOMP). (Online Documentation [https://pypi.org/project/stomp.py/])

	os – Miscellaneous operating system interface. Needed to set environment variables for the GridAPPS-D connection if working from a single Python script or notebook. (Online Documentation [https://docs.python.org/3/library/os.html])

[]:

import argparse
import json
import logging
import sys
import time
import pytz
import stomp
import os

GridAPPSD-Python GridAPPSD Library

This library contains the most commonly used methods needed for building GridAPPS-D applications and services.

All of these methods are for the GridAPPS-D connection object defined using gapps = GridAPPSD()

Get Methods

This group of methods are used to get information and statuses about the GridAPPS-D platform and simulations:

	.get_application_status() – Returns the current status of an application

	.get_application_id() – Returns the unique ID of an application registered with the Platform

	.get_houses() – Returns houses populated in the feeder

	.get_logger() – Returns a log instance for interacting with logs within the Platform

	.get_platform_status() – Returns the current status of the Platform

	.get_service_status() – Returns the current status of a service

	.get_simulation_id() – Returns the simulation ID for the current GridAPPSD connection

Set / Send Methods

This group of methods are used to set the status of applications and services:

	.set_application_status() – Set the status of an application

	.set_service_status() – Set the status of a service

	.set_simulation_id(simulation_id) – Set the simulation ID if none is defined

	.send_simulation_status(status, message, log_level) – Sets simulation + service status and writes to GridAPPS-D logs

	.send_status(status, message, log_level) – Sets application status and writes to GridAPPS-D logs

PowerGrid Models API Methods

This group of methods run pre-built PowerGrid Models API queries for simpler query types:

	query_data(query, timeout) – Run a generic SPARQL Query

	query_model(model_id, object_type, object_id) – Query using full CIM100 prefix

	query_model_info() – Query for dictionary of all models

	query_model_names(model_id) – Query for mRIDs of all models

	query_object(object_id, model_id) – Query for CIM attributes of an object

	query_object_dictionary(model_id, object_type, object_id) – Query for object dictionary

	query_object_types(model_id) – Query for CIM classes in a model

GridAPPSD-Python Topics Library

The GridAPPSD-Python topics library is used to obtain the correct API Communication Channel, which tells the GridAPPS-D platform to which database, application, or simulation a particular API call should be delivered.

Static GridAPPS-D topics (such as those for the PowerGrid Models API, Configuration File API, and Timeseries API) can be imported using

[]:

from gridappsd import topics as t

Dynamic GridAPPS-D topics (such as those for the Simulation API and various GridAPPS-D services) can be imported using

[]:

from gridappsd.topics import simulation_output_topic

[]:

from gridappsd.topics import simulation_input_topic

[]:

from gridappsd.topics import simulation_log_topic

Each of the specific methods available in the topics library are discussed in detail in API Communication Channels.

GridAPPSD-Python Simulation Library

The GridAPPSD-Python simulation library is used for starting, running, and controlling parallel digital twin simulations. For more details on specific usage, see

	Starting a Parallel Simulation

	Pausing, Resuming, and Stopping Parallel Simulations

	Subscribing to Parallel Simulations

The Simulation library can be imported using

[]:

from gridappsd.simulation import Simulation

Available methods in the Simulation library are

	.start_simulation() – Start the simulation

	.pause() – Pause the simulation

	.resume() – Resume the simulation

	.resume_pause_at(pause_time) – Resume the simulation, and then pause it in so many seconds

	.stop() – Stop the simulation

	.run_loop() – Loop the entire simulation until interrupted

	.simulation_id – Returns the Simulation ID of the simulation

	.add_ontimestep_callback(myfunction1) – Run the desired function on each timestep

	.add_onmesurement_callback(myfunction2) – Run the desired function when a measurement is received.

	.add_oncomplete_callback(myfunction3) – Run the desired function when simulation is finished

	.add_onstart_callback(myfunction4) – Run desired function when simulation is started

Note: method name ``.add_onmesurement`` is misspelled in the library definition!!

GridAPPSD-Python DifferenceBuilder

DifferenceBuilder is a GridAPPSD-Python library that is used to create and correctly format difference messages that used to create equipment control commands. The usage of difference builder is given in Using DifferenceBuilder.

The DifferenceBuilder library can be imported using

[]:

from gridappsd import DifferenceBuilder

my_diff_build = DifferenceBuilder(simulation_id)

[image: gridappsd-logo]

GridAPPS-D Application Structure

Application Structure

The structure of a GridAPPS-D application can be broken into nine sections:

	Querying for the power system model

	Querying for measurement MRIDs

	Querying for weather data (if needed)

	Configuring parallel simulations (if needed)

	App core algorithm & measurement processing

	Subscribing to simulation output

	Publishing equipment commands

	Querying historical & timeseries data

	Subscribing and publishing to logs

Each of these task sections within an application are explained below with sample code that can interact with a simulation running on the GridAPPS-D platform.

Connecting to GridAPPS-D Platform

Prior to running any of the API calls or other core application code, the application needs to establish a secure connection with the GridAPPS-D platform.

[]:

Import GridAPPSD-Python Library:
from gridappsd import GridAPPSD

When developing locally, paste Simulation ID into this variable
When running inside docker, this is passed automatically by platform
viz_simulation_id = "242488458"

Simulation running on IEEE 123 node model:
model_mrid = "_C1C3E687-6FFD-C753-582B-632A27E28507"

[]:

Set environment variables - when developing, put environment variable in ~/.bashrc file or export in command line
export GRIDAPPSD_USER=system
export GRIDAPPSD_PASSWORD=manager

import os # Set username a
os.environ['GRIDAPPSD_USER'] = 'tutorial_user'
os.environ['GRIDAPPSD_PASSWORD'] = '12345!'

Connect to GridAPPS-D Platform
gapps = GridAPPSD(viz_simulation_id)
assert gapps.connected

Querying for the Power System Model

The first portion of a GridAPPS-D application is series of queries to the PowerGrid Models API to obtain information about the power system model.

Because GridAPPS-D applications are designed to be portable across numerous power system models without any code modification, the application must query the Blazegraph database and create a set of local variables that contain the information needed by the app to run its internal code.

An application will query for the various pieces of power system equipment relevant to its objective (e.g. a VVO app will be interested in regulators and capacitors, while a FLISR app will be interested in switches and reclosers present in the model). The query will typically include requests for information about the names, location, mRIDS, and electrical parameters for the various pieces of equipment needed by the application..

Model Query Information flow

The figure below shows the information flow involved in making a query for the power system model.

The query is sent using gapps.get_response(topic, message) on a queue channel (explained in API Communication Channels) with a response expected back from the platform within the specified timeout period.

[image: Query-for-power-system-model]

Application passes query to GridAPPS-D Platform

First, the application creates a query message for requesting information about the desired power system components in the format of a JSON string or equivalant Python dictionary object. The syntax of this message is explained in detail in Using the PowerGrid Models API.

The application then passes the query through the PowerGrid Models API to the GridAPPS-D Platform, which publishes it to a queue channel on the GOSS Message Bus. If the app is authenticated and authorized to pass queries, the query message is delivered to the data managers, which obtain the desired information from the Blazegraph Database.

GridAPPS-D Platform responds to Application query

The data managers then publish the response from the Blazegraph Database to the appropriate queue channel. The PowerGrid Models API then returns the desired information back to the application as a JSON message or equivalant Python dictionary object.

Model Query Sample App Code

Below is a sample query of how the application will use the PowerGrid Models API to query for the details associated for all the switches in the feeder.

[]:

from gridappsd import topics as t

message = {
 "modelId": model_mrid,
 "requestType": "QUERY_OBJECT_DICT",
 "resultFormat": "JSON",
 "objectType": "LoadBreakSwitch"
}

response_obj = gapps.get_response(t.REQUEST_POWERGRID_DATA, message)
switch_dict = response_obj["data"]

Filter to get mRID for switch SW2:
for index in switch_dict:
 if index["IdentifiedObject.name"] == 'sw2':
 sw_mrid = index["IdentifiedObject.mRID"]

print(switch_dict[0]) # Print dictionary for first switch

print('mRID of sw2 is ',sw_mrid)

Querying for Measurement mRIDs

The next portion of a GridAPPS-D application is series of queries to the PowerGrid Models API to obtain information about the measurements associated with various pieces of equipment the application is interested in. Due to structure of the Common Information Model (introduced in Intro to Common Information Model), there exist a separate set of objects associated with the positive-neutral-voltage (PNV), volt-ampere (VA), and position
measurements (POS) for each line, transformer, switch, etc.

Because GridAPPS-D applications are designed to be portable across numerous power system models without any code modification, the application must query the Blazegraph Database and create a set of local variables that contain the unique mRIDS of each measurement needed by the app to run its internal code. In a subsequent step, the app will use these measurement mRIDs to subscribe to the live streaming data issued by the simulation.

Measurement Query Information Flow

The figure below shows the information flow involved in making a query for the power system model.

The query is sent using gapps.get_response(topic, message) on a queue channel (explained in API Communication Channels) with a response expected back from the platform within the specified timeout period.

[image: Query-for-model-MRIDs]

The figure below shows the information flow involved in making a query for the power system model.

Application passes query to GridAPPS-D Platform

First, the application creates a query message for requesting information about the desired power system components in the format of a JSON string or equivalant Python dictionary object. The syntax of this message is explained in detail in Using PowerGrid Models API.

The application then passes the query through the PowerGrid Models API to the GridAPPS-D Platform, which publishes it to a queue channel on the GOSS Message Bus. If the app is authenticated and authorized to pass queries, the query message is delivered to the data managers, which obtain the desired information from the Blazegraph Database.

GridAPPS-D Platform responds to Application query

The data managers then publish the response from the Blazegraph Database to the appropriate queue channel. The PowerGrid Models API then returns the desired information back to the application as a JSON message or equivalant Python dictionary object.

Measurement Query Sample App Code

Below is a sample query of how the application will use the PowerGrid Models API to query for the measurement mRIDs of all switches in the power system model

[]:

message = {
 "modelId": model_mrid,
 "requestType": "QUERY_OBJECT_MEASUREMENTS",
 "resultFormat": "JSON",
 "objectType": "LoadBreakSwitch"
}

response_obj = gapps.get_response(t.REQUEST_POWERGRID_DATA, message) # Pass query to PowerGrid Models API
measurements_obj = response_obj["data"]

global Pos_obj # Define global python dictionary of position measurements
Pos_obj = [k for k in measurements_obj if k['type'] == 'Pos'] # Filter measurements to just switch positions

print(Pos_obj[0]) # Print switch position measurement mRID for first switch

Querying for Weather Data

The next portion of a GridAPPS-D application is series of queries to the Timeseries API to obtain information about the weather data for the current time, including irradiation, temperature, etc. This information can be used for solar forecasting, load forecasting, etc.

Because GridAPPS-D applications are designed to be portable across numerous power system models without any code modification, the application must query the Timeseries Influx Database and create a set of local variables that contain the weather data needed by the app to run its internal code.

Weather Query Information Flow

The figure below shows the information flow involved in making a query for the power system model.

The query is sent using gapps.get_response(topic, message) on the Timeseries queue channel (explained in API Communication Channels) with a response expected back from the platform within the specified timeout period.

[image: Query-for-weather]

Application passes query to GridAPPS-D Platform

First, the application creates a query message for requesting information about the desired power system components in the format of a JSON string or equivalant Python dictionary object. The syntax of this message is explained in detail in Using the Timeseries API.

The application then passes the query through the Timeseries API to the GridAPPS-D Platform, which publishes it to a queue channel on the GOSS Message Bus. If the app is authenticated and authorized to pass queries, the query message is delivered to the Data Managers, which obtain the desired information from the Timeseries Influx Database.

GridAPPS-D Platform responds to Application query

The Data Managers then publish the response from the Timeseries Influx Database to the appropriate queue channel. The Timeseries API then returns the desired information back to the application as a JSON message or equivalant Python dictionary object.

Weather Query Sample App Code

Below is a sample query to the Timeseries API requesting all weather data between a certain startTime and endTime (given in unix absolute time). The application can then use that weather data to feed its internal forecasting algorithm.

[]:

Use queryFilter of "startTime" and "endTime"
message = {
 "queryMeasurement":"weather",
 "queryFilter":{"startTime":"1357048800000000",
 "endTime":"1357048860000000"},
 "responseFormat":"JSON"
}

response_obj = gapps.get_response(t.TIMESERIES, message) # Pass query to Timeseries API
weather_obj = response_obj["data"]

print(weather_obj[1]) # Print first line of weather data

Configuring a Parallel Simulation

Some applications may choose to run parallel simulations (similar to a digital twin), either within the GridAPPS-D platform or by exporting the model to OpenDSS, GridLAB-D, etc. This is accomplished through one or more queries to the Configuration File API to create a simulation configuration file and/or exported power system model.

The simulation configuration file contains all the necessary info to create a new simulation, including the power system model, date/time, and variations from the default basecase (i.e. re-dispatched DERs and switches that have been opened/closed).

The exported power system model is the entire model as a set of GLM or DSS that can be saved to an external file and then solved with a different power flow solver outside of the GridAPPS-D Platform.

Configuration Query Information Flow

The figure below shows the information flow involved in making a query for the power system model.

The query is sent using gapps.get_response(topic, message) on the Configuration File queue channel (explained in API Communication Channels) with a response expected back from the platform within the specified timeout period.

[image: config-sim-export]

Application passes query to GridAPPS-D Platform

First, the application creates a query message for requesting information about the desired power system configuration in the format of a JSON string or equivalant Python dictionary object. The syntax of this message is explained in detail in Using the Configuration File API

The application then passes the query through the Configuration File API to the GridAPPS-D Platform, which publishes it to a queue channel on the GOSS Message Bus. If the app is authenticated and authorized to pass queries, the query message is delivered to the Configuration Manager.

GridAPPS-D Platform responds to Application query

The Configuration Manager obtains the CIM XML file for the desired power system model and then converts it to the desired output format with all of the requested changes to the model. The Configuration File API then returns the desired information back to the application as a JSON message (for Y-Bus or partial models) or export the files to the directory specified in the

Configuration Query Sample App Code

Below is a sample query showing how an application would make a query through the Configuration File API to change all loads to constant current loads, convert the power system model to a set of OpenDSS files, and export them to the directory /tmp/dsssimulation.

[]:

topic = "goss.gridappsd.process.request.config"

message = {
 "configurationType": "DSS All",
 "parameters": {
 "directory": "/tmp/dsssimulation/",
 "model_id": model_mrid,
 "simulation_id": "12345678",
 "simulation_name": "ieee123",
 "simulation_start_time": "1518958800",
 "simulation_duration": "60",
 "simulation_broker_host": "localhost",
 "simulation_broker_port": "61616",
 "schedule_name": "ieeezipload",
 "load_scaling_factor": "1.0",
 "z_fraction": "0.0",
 "i_fraction": "1.0",
 "p_fraction": "0.0",
 "solver_method": "NR" }
}

gapps.get_response(topic, message)

Processing Measurements & App Core Algorithm

The next portion of a GridAPPS-D application is the measurement processing and core algorithm section. This section is built as either a class or function definition with prescribed arguments. Each has its advantages and disadvantages:

	The function-based approach is simpler and easier to implement. However, any parameters obtained from other APIs or methods to be used inside the function currently need to be defined as global variables.

	The class-based approach is more complex, but also more powerful. It provides greater flexibility in creating additional methods, arguments, etc.

App Core Information Flow

This portion of the application does not communicate directly with the GridAPPS-D platform.

Instead, the next part of the GridAPPS-D application (Subscribing to Simulation Output) delivers the simulated SCADA measurement data to the core algorithm function / class definition. The core algorithm processes the data to extract the desired measurements and run its optimization / control agorithm.

[image: app-core-algorithm]

No message from core algorithm to GridAPPS-D Platform

The core algorithm does not send any API messages to the platform

No response to core algorithm from GridAPPS-D Platform

The core algorithm receives its measurement data and other imputs from the subscription object defined next, rather than directly from the GridAPPS-D platform.

App Core Sample App Code

Below is a very simple core algorithm that determines the number of open switches in the model and prints the result for each simulation timestep. The syntax of the function / class definition is described in detail in

[]:

def demoSubscription1(header, message):
 # Extract time and measurement values from message
 timestamp = message["message"]["timestamp"]
 meas_value = message["message"]["measurements"]

 meas_mrid = list(meas_value.keys()) #obtain list of all mrid from message

 # Filter to measurements with value of zero
 open_switches = []
 for index in Pos_obj:
 if index["measid"] in meas_value:
 mrid = index["measid"]
 power = meas_value[mrid]
 if power["value"] == 0:
 open_switches.append(index["eqname"])

 # Print message to command line
 print("............")
 print("Number of open switches at time", timestamp, ' is ', len(set(open_switches)))

Subscribing to Simulation Output

The next portion of a GridAPPS-D application is series of queries to the Timeseries API to obtain information about the weather data for the current time, including irradiation, temperature, etc. This information can be used for solar forecasting, load forecasting, etc.

Because GridAPPS-D applications are designed to be portable across numerous power system models without any code modification, the application must query the Timeseries Influx Database and create a set of local variables that contain the weather data needed by the app to run its internal code.

Simulation Subscription Information Flow

The figure below shows the information flow involved in subscribing to the simulation output.

The subscription request is sent using gapps.subscribe(topic, class/function object) on the specific Simulation topic channel (explained in API Communication Channels). No immediate response is expected back from the platform. However, after the next simulation timestep, the Platform will continue to deliver a complete set of measurements back to the application for each timestep until the end of the simulation.

[image: subscribe-to-simulation]

Application passes subscription request to GridAPPS-D Platform

The subscription request is perfromed by passing the app core algorithm function / class definition to the gapps.subscribe method. The application then passes the subscription request through the Simulation API to the topic channel for the particular simulation on the GOSS Message Bus. If the application is authorized to access simulation output, the subscription request is delivered to the Simulation Manager.

GridAPPS-D Platform delivers published simulation output to Application

Unlike the previous queries made to the various databases, the GridAPPS-D Platform does not provide any immediate response back to the application. Instead, the Simulation Manager will start delivering measurement data back to the application through the Simulation API at each subsequent timestep until the simulation ends or the application unsubscribes. The measurement data is then passed to the core algorithm class / function, where it is processed and used to run the app’s optimization /
control algorithms.

Simulation Subscription Sample App Code

Below is an example of how an application subscribes to the GridAPPS-D simulation output using the function or class definition created as part of the Measurement Processing / App Core

[]:

from gridappsd.topics import simulation_output_topic

output_topic = simulation_output_topic(viz_simulation_id)

gapps.subscribe(output_topic, demoSubscription1)

Publishing Equipment Commands

The next portion of a GridAPPS-D App is publishing equipment control commands based on the optimization results or objectives of the app algorithm.

Depending on the preference of the developer, this portion can be a separate function definition, or included as part of the main class definition as part of the Measurement Processing / App Core class definition described earlier.

Equipment Command Information Flow

The figure below outlines information flow involved in publishing equipment commands to the simulation input.

Unlike the various queries to the databases in the app sections earlier, equipment control commands are passed to the GridAPPS-D API using the gapps.send(topic, message) method. No response is expected from the GridAPPS-D platform.

If the application desires to verify that the equipment control command was received and implemented, it needs to do so by 1) checking for changes in the associated measurements at the next timestep and/or 2) querying the Timeseries Database for historical simulation data associated with the equipment control command.

[image: publish-commands]

Application sends difference message to GridAPPS-D Platform

First, the application creates a difference message containing the current and desired future control point / state of the particular piece of power system equipment to be controlled. The difference message is a JSON string or equivalant Python dictionary object. The syntax of a difference message is explained in detail in Publishing Equipment Commands.

The application then passes the query through the Simulation API to the GridAPPS-D Platform, which publishes it on the topic channel for the particular simulation on the GOSS Message Bus. If the app is authenticated and authorized to control equipment, the difference message is delivered to the Simulation Manager. The Simulation Manager then passes the command to the simulation through the Co-Simulation Bridge (either FNCS or HELICS).

No response from GridAPPS-D Platform back to Application

The GridAPPS-D Platform does not provide any response back to the application after processing the difference message and implementing the new equipment control setpoint.

Equipment Command Sample App Code

Below is an example of an app code block

[]:

import time
from gridappsd import DifferenceBuilder
from gridappsd.topics import simulation_input_topic

input_topic = simulation_input_topic(viz_simulation_id)

my_open_diff = DifferenceBuilder(viz_simulation_id)
my_open_diff.add_difference(sw_mrid, "Switch.open", 1, 0) # Open switch given by sw_mrid
open_message = my_open_diff.get_message()

my_close_diff = DifferenceBuilder(viz_simulation_id)
my_close_diff.add_difference(sw_mrid, "Switch.open", 0, 1) # Close switch given by sw_mrid
close_message = my_close_diff.get_message()

while True:
 time.sleep(5)
 gapps.send(input_topic, open_message)
 time.sleep(5)
 gapps.send(input_topic, close_message)

Viewing Application Results in GridAPPS-D Viz

Return to the browser tab in which the GridAPPS-D Simulation is currently running. Switch sw5 will now be opening and closing every 5 seconds, with the downstream portion of the feeder being de-energized and reconnected with each switch operation.

The core application algorithm will also reflect this with the printed response alternating between two and three open switches every few timesteps.

Querying Historical & Timeseries Data

The next portion of a GridAPPS-D application is querying historical data from the current and/or previous simulations.

All simulation output and commands from the current and previous simulations are stored in the Timeseries Database, and can be queried to provide AI/ML training data, verify processing of equipment commands, or

Note that Timeseries Database data is cleared when the GridAPPS-D Platform is shut down with the ./stop.sh script. It is recommended to copy historical / training data to an external persistent directory using the docker cp command, as given in Docker Shortcuts.

Historical Data Query Information Flow

The figure below outlines the information flow involved in querying for historical and timeseries data.

The query is sent using the gapps.get_response(topic, message) method on the Timeseries queue channel with a response expected back from the GridAPPS-D platform within the specified timeout period.

[image: query-timeseries-data]

Application passes query to GridAPPS-D Platform

First, the application creates a query message for requesting information about the desired power system components in the format of a JSON string or equivalant Python dictionary object. The syntax of this message is explained in detail in Querying Timeseries Data.

The application then passes the query through the Timeseries API to the GridAPPS-D Platform, which publishes it to a queue channel on the GOSS Message Bus. If the app is authenticated and authorized to pass queries, the query message is delivered to the Data Managers, which obtain the desired information from the Timeseries Influx Database.

GridAPPS-D Platform responds to Application query

The Data Managers then publish the response from the Timeseries Influx Database to the appropriate queue channel. The Timeseries API then returns the desired information back to the application as a JSON message or equivalant Python dictionary object.

Historical Data Query Sample App Code

[]:

import time

start_time = str(int(time.time())-10) # Start query from 10 sec ago
end_time = str(int(time.time()))

Query for a particular set of measurments
message = {
 "queryMeasurement": "simulation",
 "queryFilter":{"simulation_id": simulation_id,
 "startTime": start_time,
 "endTime": end_time,
 "measurement_mrid": pos_obj},
 "responseFormat":"JSON"
}

gapps.get_response(t.TIMESERIES, message) # Pass API call

Subscribing and Publishing to Logs

The last portion of an application is subscribing and publishing to logs. This step is extremely useful for 1) informing end users of application behavior and 2) application debugging during development and demonstration.

The GridAPPS-D Logging API provides an extension of the standard Python logging library and enables applications to subscribe to real-time log messages from a simulation, query previously logged messages from the MySQL database, and publish messages to their either own log or their GridAPPS-D logs.

Logging Information Flow

The figure below shows the information flow involved in subscribing and publishing to logs.

[image: subscribe-publish-to-logs]

Log Message Sample App Code

[]:

from gridappsd.topics import simulation_log_topic
log_topic = simulation_log_topic(viz_simulation_id)

def demoLogFunction(header, message):
 timestamp = message["timestamp"]
 log_message = message["logMessage"]

 print("Log message received at timestamp ", timestamp, "which reads:")
 print(log_message)
 print("........................")

gapps.subscribe(log_topic, demoLogFunction)

[image: gridappsd-logo]

GridAPPS-D Service Structure

[]:

Introduction to the Common Information Model

This section introduces the CIM as a model format that is used for power system data and information exchange across applications, platforms, and services. The CIM is used for all power system models in GridAPPS-D, and it is important to have an understanding of the concepts and implementation of CIM for describing power systems using unique mRIDs for each piece of equipment and associated modeling objects.

Introduction

What is the Common Information Model?

The Common Information Model (CIM) is an abstract information model that can be used to model an electrical network and the various equipment used on the network.

CIM is widely used for data exchange of bulk transmission power systems, and is now beginning to find increasing use for distribution modeling and analysis.

By using a common model, utilities, vendors, and researches from both academia and industry can reduce the effort and cost of data integration, and instead focus on developing increased functionality for managing and optimizing the smart grid of the future.

Why is Data Integration Important?

In a typical distribution utility there are hundreds and even in some cases thousands of software solutions and applications that are managed by the IT department. These applications are used and operated independently by the various groups, departments, and organizations within the utility. Whenever a business process requires data from one system or application to be transferred to another system or application, the data needs to be manually extracted from the first database and then converted
to the format of the other application’s database.

Two strategies exist for dealing with extreme level of effort needed to manage, update, export, convert, and import data formats between different applications and databases.

	Reduce the number of databases by purchasing a large software suite from a single vendor using a single proprietary data format that is internally-integrated and compatible with all the applications needed by utility

	Adopt a common data integration platform that allows external integration between multiple software packages using a shared data format

What does CIM Provide?

CIM is an information model, that is an abstract, formal representation of objects, their attributes, the relationships between them, and the operations that can be performed on them. It is NOT a database structure or physical data store. It is a technology-agnostic model for describing the properties of physical power system equipment, power flow data, and messages that can be exchanged between various platforms and applications.

To describe various power system objects, CIM uses Class Diagrams and Sequence Diagrams created using the Unified Modeling Language (UML). It also uses the Resource Description Framework (RDF) to describe classes and attributes in an eXtensible Markup Language (XML) file format. The details of what is covered in each part of the CIM is described in detail below.

Background and Structure of the CIM

UML Class Diagrams

The Unified Modeling Language (UML) provides 13 types of diagrams to define software architecture. One of the is the UML Class Diagram, which visually represents object hierarchies and relationships.

First a review of basic concepts and terminology related to class diagrams:

	An object is any thing that we want to describe.

	A class represents a specific type of object.

	A class hierarchy is a model of the system showing every component as a separate class. The class hierarchy should represent the real-world structure of the system.

	A package is a group of classes. Think of folders in a computer file explorer.

	Inheritance allows us to define very general “parent classes” and very specific “child classes”.

	Attributes are the properties that describe what type of thing the class represents.

	Associations are the relationships between various objects and how they are connected to each other.

Class diagrams show all the attributes and associations of various classes in a particular package in a single picture. To read a class diagram, remember that

	Lines with an arrowhead indicate class inheritance. For example, in the figure below, ACLineSegment inherits from Conductor, ConductingEquipment, Equipment and then PowerSystemResource. ACLineSegment inherits all attributes and associations from its ancestors (e.g., length), in addition to its own attributes and ancestors.

	Lines with a diamond indicate composition. For example, Substations make up a SubGeographicalRegion, which then make up a GeographicRegion.

	Lines without a terminating symbol are associations. For example, ACLineSegment has (through inheritance) a BaseVoltage, Location and one or more Terminals.

	Italicized names at the top of each class indicate the ancestor (aka superclass), in cases where the ancestor does not appear on the diagram. For example, PowerSystemResource inherits from IdentifiedObject.

[image: image.png]

A complete set of UML Class Diagrams is provided in the Advanced CIM Modeling section. This section contains class diagrams for all the objects used in GridAPPS-D and tables of properties to help you create and pass your own custom SPARQL queries to the Blazegraph Database.

UML Sequence Diagrams

UML sequence diagrams are used to model the flow of messages, events, and actions between the entities of a system. Time is represented vertically—showing the time sequence of interactions in the system. Displayed horizontally at the top of the diagram are the applications or entities in the system.

CIM uses UML diagrams to represent work flow, operations processes, and other utility use-cases. For the purposes of application development within GridAPPS-D, a detailed understanding of UML sequence diagrams is not required.

Resource Description Framework (RDF)

The Resource Description Framework (RDF) is a method of defining information models that is specified by the World Wide Web Consortium (the W3C). Detailed documentation is available on the W3C website [https://www.w3.org/TR/2004/REC-rdf-concepts-20040210/].

RDF focuses on making statements about objects in a subject-predicate-object expression. Each expression is commonly called a “triple” in RDF terminology. The subject is defined by naming a resource, the object denotes traits or attributes associated with the subject, and the predicate expresses the relationship between the subject and the object.

The subject, or resource, in an RDF model is expressed as a Uniform Resource Identifier (URI). URIs are similar to the Uniform Resource Locators (URLs) used as web addresses but are more general because they are not limited to accessible data on the web. The predicate and object are also technically URIs and so also are just identifiers. The subject-predicate-object triplets takes the form of expressing syntactical constructs like “a substation has a name”.

RDF Schema (RDFS) files describe the classes, attributes, and relationships of an information model and typically use an .rdfs file format. RDF instance files describe object instances and typically use an .xml extension. RDF incremental files describe changes to a set of object instances as described by an instance file, and typically use an .xml extension.

CIM uses RDF instance files to define power system models with unique master resource identifier (mRID) issued by a model authority. The mRID is globally unique within an exchange context. Global uniqeness is easily achived by using a UUID for the mRID. It is strongly recommended to do this. For CIM XML data files in RDF syntax, the mRID is mapped to rdf:ID or rdf:about attributes that identify CIM object elements.

Key Concepts & Terminology from RDF

	URI References – CIM and GridAPPS-D use two URI references to identify properties and resources. These identify the RDF format and the CIM classes used.

	<http://www.w3.org/1999/02/22-rdf-syntax-ns#>

	<http://iec.ch/TC57/CIM100#>

	__

Summary of CIM XML Classes

This section provides a brief look at the classes of equipment modeled in CIM XML and used in GridAPPS-D.

Details of each package, the class diagram, and attributes of each class are provided in the relevant sections of the reference guide to this lesson.

Names, Nodes, Terminals

The Core package provides very high level information of the distribution feeder model

IdentifiedObject

The Core package contains a class called IdentifiedObject. This class is very abstract and only contains attributes used to reference the object either by a user or in software. The attributes of IdentifiedObject include *mRID*, which is the master resource identifier that should be a globally 3-18 unique identifier of objects; the mRID does not have to be human-readable. This identifier is generally intended to be used by software systems.

The attributes name, description, aliasName, and pathName are intended for providing identifiers that are human-readable. It is common for names of objects within a utility to not be unique due to historical naming conventions, the results of mergers and acquisitions, and the inability of other software systems to manage uniqueness. For these reasons, there are no constraints on these names requiring them to be unique.

PowerSystemResource

The PowerSystemResource class inherits from IdentifiedObject and provides another relatively abstract class used in the CIM. The PowerSystemResource class supports an association to a Company class. This relationship identifies the company that operates the resource.

ConnectivityNode

The ConnectivityNode class has a relationship to the Terminal class. Each ConductingEquipment object has Terminals, which are then connected to ConnectivityNodes. The terminals can be thought of as being closely related to the conducting equipment, and the connectivity nodes are the glue that defines what equipment is connected to what other equipment.

CIM also includes the TopologicalNode class, which is used to convert breaker-switch oriented power system models to bus-branch models. This object is not used in GridAPPS-D, which does not feature transmission substation configurations (e.g. breaker-and-a-half, main-and-transfer-bus, ring-bus, etc.) that require topological processing of breaker and switch positions to determine network topology and line connectivity.

Power System Equipment

CIM XML provides a number of classes for defining physical power system equipment, including lines, switches, transformers, regulators, capacitors, and reactors.

Equipment and ConductingEquipment

The ConductingEquipment class inherits from an Equipment class which inherits from PowerSystemResource. This is the parent class for most of the physical equipment that are used to model the power system.

Conductor and ACLineSegment

Directly inheriting from ConductingEquipment is the Conductor class. This class specifies the length of the conductor.

Each segment of a distribution line is defined in a CIM model as an ACLineSegment. This class contains the electrical attributes commonly associated with a line needed for steady state analysis, including the positive-sequence and zero-sequence resistance, reactance, conductance, and susceptance.

More details are available in the `LineModel class diagram <>`__ and `list of attributes <>`__

PowerTransformer, TransformerWindings, and TapChanger

These three classes specify the portions of a step-down transformer and regulator.

The PowerTransformer class inherits from Equipment (not ConductingEquipment) and has associations to the TransformerWinding class.

The majority of the electrical characteristics associated with the transformer are actually associated with the TransformerWinding objects.

An association from the TransformerWinding class to the TapChanger class is used when the transformer has a tap changer. The TapChanger class has as attributes for things like the tap steps and nominal setting. The TapChanger class inherits from the PowerSystemResource class instead of the Equipment class, so it has few inherited attributes and associations.

References

Portions of this tutorial have reproduced verbatim text and information from the EPRI report An Introduction to the CIM for Integrating Distribution Applications and System [http://www.tut.fi/eee/research/adine/materiaalit/Active%20network/ICT/EPRI%20CIM%20for%20distribution.pdf] and the CIM Ontology Diagrams [https://ontology.tno.nl/IEC_CIM/]

[]:

[image: gridappsd-logo]

API Communication Channels

When communicating with the GridAPPS-D Platform through API, it is necessary to specify a communication channel, which tells the GridAPPS-D platform on which channel to communicate with the application and through which API the message should be directed.

/queue/ vs /topic/ Channels

GridAPPS-D uses two types of communication channels to determine the visibility of the API call to other applications and services.

Queue Channels

/queue/ is used for communication channels where only the GridAPPS-D Platform is listening to the API call. These API calls are processed on a first-in, first-out basis. There is only one subscriber to the communication channel.

API calls to the Blazegraph database, Logs, Timeseries database, Config files, and Platform status are all queue channels. All the GridAPPS-D Topics for queue channels typically do not change over the course of an application or simulation run.

In the GridAPPSD-Python library, it is assumed that a topic is a queue channel if not otherwise specified. These two GridAPPS-D Topic definitions are equivalent:

topic = '/queue/goss.gridappsd.process.request.data.powergridmodel'

topic = 'goss.gridappsd.process.request.data.powergridmodel'

Topic Channels

/topic/ is used for communication channels where the API call is to broadcast to all subscribers through the GOSS Message Bus, inlcuding other applications, services, FNCS Bridge, etc.

API calls to the Simulation, services, and active applications use topic channels to communicate and typically need to the specify the Simulation IDs, Service IDs, and Application IDs. The particular topic for such an API call will change between simulations and instances, and so shortcut functions are provided in GridAPPSD-Python library to assist in generating the correct Topic.

In GridAPPSD-Python, it is necessary to specify if a GridAPPS-D Topic is a /topic/ channel broadcasting to all subscribers:

topic = "/topic/goss.gridappsd.simulation.input."+simulation_id

Static GridAPPS-D Topics

Below are a list of the most common topics and where they are used. The appropriate topic for each API call will also be listed again in the subsequent sections on each GridAPPS-D API. The list below can serve as an additional convenient reference.

These topics remain the remain the same between platform, application, and simulation instances. The GridAPPSD-Python Library shortcuts use all uppercase naming to indicate that these are static topic names.

Importing the Topics Library

When using topics in GridAPPSD-Python, it is recommended to import the topics library from gridappsd. This enables you to rapidly call the correct topic without needing to search for the correct topic string. This also protects your code from any changes inside the GridAPPS-D Platform if particular topic strings are deprecated or replaced – the python library names will stay persistent between all Platform releases.

For static GridAPPS-D topics, import the library by running

[]:

from gridappsd import topics as t

Request PowerGrid Model Data

This /queue/ channel is used to communicate with PowerGrid Models API to pull power system model info from the the Blazegraph Database. The PowerGrid Model API is covered in detail in Using the PowerGrid Models API.

The base static string used is goss.gridappsd.process.request.data.powergridmodel, which can be called using the .REQUEST_POWERGRID_DATA or .BLAZEGRAPH methods from the topics library

A sample message that would be passed with this topic is

[]:

from gridappsd import topics as t

Sample PowerGrid Model message
message = '{"requestType": "QUERY_MODEL_NAMES", "resultFormat": "JSON"}'

gapps.get_response(t.REQUEST_POWERGRID_DATA, message)

[]:

from gridappsd import topics as t

Sample PowerGrid Model message
message = '{"requestType": "QUERY_MODEL_NAMES", "resultFormat": "JSON"}'

gapps.get_response(t.BLAZEGRAPH, message)

Request Timeseries Data

This /queue/ channel is used to communicate with the Timeseries API and Timeseries database, which stores real-time and historical data, such as weather information and AMI meter readings. The Timeseries database is covered in detail in Using the Timeseries API. A sample message that would be passed with this topic is

Text String: The topic can be specified as a static string:

	topic = "goss.gridappsd.process.request.data.timeseries"

	gapps.get_response(topic, message)

GridAPPSD-Python Library Method: The correct topic can also be imported from the GridAPPSD-Python topics library:

	from gridappsd import topics as t

	gapps.get_response(t.TIMESERIES, message)

Request Platform Status

This topic is used to check that status of the GridAPPS-D Platform.

Text String: The topic can be specified as a static string:

	topic = "/queue/goss.gridappsd.process.request.status.platform"

	gapps.get_response(topic, message)

GridAPPSD-Python Library Method: The correct topic can also be imported from the GridAPPSD-Python topics library.

	from gridappsd import topics as t

	gapps.get_response(t.PLATFORM_STATUS, message)

Querying Log Data

This topic is used to query log data in the MySQL Database using the Logging API

Note: This topic is different from the one used to subscribe to real-time log data being published by an ongoing simulation. This topic is used for querying data already stored in the database.

Text String: The topic can be specified as a static string:

	topic = "goss.gridappsd.process.request.data.log"

	gapps.get_response(topic, message)

GridAPPSD-Python Library Method: The correct topic can also be imported from the GridAPPSD-Python topics library:

	from gridappsd import topics as t

	gapps.get_response(t.LOGS, message)

Subscribing to Platform Logs

This topic is used to subscribe the to logs created by the GridAPPS-D Platform, such as which managers and core services have been started and are running.

Text String: The topic can be specified as a static string:

	topic = "goss.gridappsd.process.request.data.timeseries"

	gapps.get_response(topic, message)

GridAPPSD-Python Library Function: The correct topic can also be imported from the GridAPPSD-Python topics library. Note that this is a python function similar to the dynamic topics presented in the next section.

	`from gridappsd.topics import platfor_log_topic

	topic = platform_log_topic()

	gapps.get_response(topic, message)

[Return to Top]

Dynamic GridAPPS-D Topics

Several GridAPPS-D topics are unique to each application, simulation, or service instance. These topics are dynamic and will change from instance to instance.

The GridAPPS-D Platform will require that the topic specify the particular instance so that the API call can be delivered to the correct simulation or service.

To assist with the task of creating a dynamic topic that automatically updates between instances, several function are available in the GridAPPSD-Python topics library.

The available GridAPPSD-Python functions for dynamic topics are

	simulation_input_topic(simulaton_id) – Gets the topic to write data to for the simulation

	simulation_output_topic(simulation_id) – Gets the topic for subscribing to output from the simulation

	simulation_log_topic(simulation_id) – Topic for the subscribing to the logs from the simulation

	service_input_topic(service_id, simulation_id) – Utility method for getting the input topic for a specific service

	service_output_topic(service_id, simulation_id) – Utility method for getting the output topic for a specific service

	application_input_topic(application_id, simulation_id) – Utility method for getting the input topic for a specific application

	application_output_topic(application_id, simulation_id) – Utility method for getting the output topic for a specific application

Subscribe to Simulation Output

This topic is used to communicate with the Simulation API, which is covered in detail in Controlling Simulations with Simulation API. The Simulation Output Topic is used to subscribe to the simulation output, enabling applications to listen to switching actions, obtain equipment measurements, and so on.

The GridAPPSD-Python shortcut function for generating the correct topic is

simulation_output_topic(simulation_id)

There are two ways to use the function. The first is to call the library function directly. The second is to use it as part of a class definition.

1) Call the topic function directly

[]:

Import GridAPPS-D Topic Function:
from gridappsd.topics import simulation_output_topic

Call GridAPPSD-Python Topic Function
topic = simulation_output_topic(simulation_id)

Print to Notebook Kernel:
print(topic)

2) Use the topic function in a class definition

[]:

Import GridAPPS-D Topic Function:
from gridappsd.topics import simulation_output_topic

Define Subscription Class
class MySubscription(object):
 def __init__(self,simulation_id):
 self._subscribe_to_topic = simulation_output_topic(simulation_id)

Define Main Function:
def _main():
 subscription = MySubscription(simulation_id)
 print(subscription._subscribe_to_topic)

Call Main Function:
_main()

Publish to Simulation Input

This topic is used to communicate with the Simulation API, which is covered in detail in Controlling Simulations with Simulation API. The Simulation Input Topic is used to publish commands to the GOSS Message Bus, which are then broadcast to all applications, services, and simulations that are listening. Examples of actions that will use this topic include taking switching actions, adjusting DER setpoints, and changing regulator taps.

The GridAPPSD-Python shortcut function for generating the correct topic is

simulation_input_topic(simulation_id)

There are two ways to use the function. The first is to call the library function directly. The second is to use it as part of a class definition.

1) Call the topic function directly

[]:

Import GridAPPS-D Topic Function:
from gridappsd.topics import simulation_input_topic

Call GridAPPSD-Python Topic Function
topic = simulation_output_topic(simulation_id)

Print to Notebook Kernel:
print(topic)

2) Use the topic function in a class definition

[]:

Import GridAPPS-D Topic Function:
from gridappsd.topics import simulation_input_topic

Define Subscription Class
class MySimulationPublisher(object):
 def __init__(self,simulation_id):
 self._publish_to_topic = simulation_input_topic(simulation_id)

Define Main Function:
def _main():
 subscription = MySimulationPublisher(simulation_id)
 print(subscription._publish_to_topic)

Call Main Function:
_main()

Subscribe to Simulation Logs

This topic is used to communicate with the Simulation API, which is covered in detail in Lesson XX. The Simulation Output Topic is used to subscribe to the simulation output, which applications use to * Listen to switching actions * Obtaining equipment measurements * *GET FULL LIST*

The GridAPPSD-Python shortcut function for generating the correct topic is

simulation_output_topic(simulation_id)

There are two ways to use the function. The first is to call the library function directly. The second is to use it as part of a class definition.

1) Call the topic function directly

[]:

Import GridAPPS-D Topic Function:
from gridappsd.topics import simulation_output_topic

Call GridAPPSD-Python Topic Function
topic = simulation_output_topic(simulation_id)

Print to Notebook Kernel:
print(topic)

2) Use the topic function in a class definition

[]:

Import GridAPPS-D Topic Function:
from gridappsd.topics import simulation_output_topic

Define Subscription Class
class MySubscription(object):
 def __init__(self,simulation_id):
 self._subscribe_to_topic = simulation_output_topic(simulation_id)

Define Main Function:
def _main():
 subscription = MySubscription(simulation_id)
 print(subscription._subscribe_to_topic)

Call Main Function:
_main()

[image: GridAPPS-D-narrow.png]

API Message Structure

This section introduces the format used for passing messages to the GridAPPS-D API and how to wrap those messages using the GridAPPSD-Python Library.

Python Dictionaries VS JSON Strings

One of the confusing aspects of passing messages to and from the GridAPPS-D Platform and APIs is the difference between Python Dictionaries and JSON scripts, which look identical.

JSON is a serialization format. That is, JSON is a way of representing structured data in the form of a textual string.

A Python Dictionary is a data structure. That is, it is a way of storing data in memory that provides certain abilities to the code: in the case of dictionaries, those abilities include rapid lookup and enumeration.

It is possible to convert between the two by importing the JSON library: import json. Full documentation of JSON-Python interoperability and usage is available in Python Docs [https://docs.python.org/3/library/json.html].

Use the json.dumps() method to serialize a dictionary as a JSON string. Use the json.loads() to import a JSON file and convert it into a dictionary. But the two are not the same: dictionaries are for working with data in your program, and JSON is for storing it or sending it around between programs.

With the GridAPPSD-Python Library, it is possible to pass query arguments as either a python dictionary or as a string. Both approaches will provide the same results.

1) Format API call message as a dictionary

This is the most direct approach, and will be used most often throughout this set of notebook tutorials. The format and structure of the python dictionary is explained in the next section.

[]:

model_mrid = "_49AD8E07-3BF9-A4E2-CB8F-C3722F837B62" # IEEE 13 Node used for all example queries

Format message as python dictionary
message = {
 "requestType": "QUERY_OBJECT_IDS",
 "resultFormat": "JSON",
 "modelId": model_mrid,
 "objectType": "LoadBreakSwitch"
}

[]:

Specify correct topic
topic = "goss.gridappsd.process.request.data.powergridmodel"

Pass API Call to GridAPPS-D Platform
gapps.get_response(topic, message)

2) Format API call message as a string

This approach uses quotations (either ' ' or " ") to wrap the API call (identical to the python dictionary) as JSON-formatted text, concatenated into a string.

[]:

model_mrid = "_49AD8E07-3BF9-A4E2-CB8F-C3722F837B62" # IEEE 13 Node used for all example queries

Format message as JSON text wrapped as a string
message = """
{
 "requestType": "QUERY_OBJECT_IDS",
 "resultFormat": "JSON",
 "modelId": "%s",
 "objectType": "LoadBreakSwitch"
}
""" % model_mrid

[]:

Specify correct topic
topic = "goss.gridappsd.process.request.data.powergridmodel"

Pass API Call to GridAPPS-D Platform
gapps.get_response(topic, message)

Structure of a GridAPPS-D Message

The structure of messages in GridAPPS-D follows that of a Python Dictionary using a data structure that is more generally known as an associative array. An excellent tutorial on advanced usage of the python dictionary structure is available on Real Python [https://realpython.com/python-dicts/].

A dictionary consists of a collection of key-value pairs. Each key-value pair maps the key to its associated value.

	A dictionary is defined by enclosing a comma-separated list of key-value pairs in curly braces ({ }).

	A colon (:) separates each key from its associated value.

	Square brackets ([]) are used for a list of values associated to a particular key.

	Additional curly braces ({ }) can be used for cases where multiple key-value pairs (e.g. equipment setpoints) are associated with a particular key (e.g. an equipment class).

The general dictionary format used for GridAPPS-D messages is

message = {
 "key1": "value1",
 "key2": ["value21", "value22"],
 "key3": {
 "key31": "value31",
 "key32": "value32"
 },
 .
 .
 .
 "key": "value"
}

Important: Be sure to pay attention to placement of commas (,) at the end of each line. Commas are placed at the end of each line except the last line. Incorrect comma placement will result in a syntax exception.

The particular set of key-value pairs for each GridAPPS-D API is covered in detail in Lessons 2.1 through 2.7.

Parsing Returned Data

After passing an API call, the GridAPPS-D Platform returns a JSON string that is subsequently converted into a python dictionary by the GridAPPSD-Python Library. This section will outline how to parse the data returned.

For this example, we are going to use a simple query from the PowerGrid Model API (covered in Lesson 2.2.) to obtain the details of a piece of equipment using its unique mRID (introduced in the next lesson).

[]:

model_mrid = "_49AD8E07-3BF9-A4E2-CB8F-C3722F837B62" # IEEE 13 Node used for all example queries

Specify correct topic
topic = "goss.gridappsd.process.request.data.powergridmodel"

message = {
 "modelId": model_mrid,
 "requestType": "QUERY_OBJECT_DICT",
 "resultFormat": "JSON",
 "objectType": "LinearShuntCompensator",
}

Pass API Call to GridAPPS-D Platform
response = gapps.get_response(topic, message)

import json
with open("foo.txt", 'w') as out:
 out.write(json.dumps(response, indent=2))

The structure of the python dictionary returned by the API is three key-value pairs for the keys of

	'data' – this is the data you requested

	'responseComplete' – true or false

	'id' – unique id associated with the API response dictionary

A typical API response will the structure below:

response = {
 'data': [{'key1': 'value1',
 'key2': ['value21', 'value22']},
 {'key1': 'value1',
 'key2': ['value21', 'value22']}],
 'responseComplete': True,
 'id': '12345678'
}

The first step is to filter the dictionary to just the data requested: response['data']. The result will be a list object.

Note: some API calls will also need to additional filters of [results][bindings]. The STOMP Client presented in the next section is very helpful for previewing the structure of the dictionary returned by GridAPPS-D.

[]:

response = gapps.get_response(topic, message)
response_obj = response['data']

As response_obj is of the python type list rather than dict, it is necessary to use numerical indices instead of keys to access the values. A simple for loop is very helpful here.

In this example, we want to filter the results to create a list that contains just the name and mRID of the capacitor banks in the model.

[]:

capacitors = []
for index in response_obj:
 cap_name = index['IdentifiedObject.name']
 cap_mrid = index['id']
 message = dict(name = cap_name,
 mrid = cap_mrid)
 capacitors.append(message)

print(capacitors)

Using the STOMP Client

The GridAPPS-D Visualization App includes a feature to pass API call messages through the GUI using the Simple Text Oriented Messaging Protocol (STOMP).

Open the Viz App, which is hosted on localhost:8080 [http://localhost:8080/] (note: cloud-hosted installations will use the IP address of the server).

Select Stomp Client from the main drop-down menu:

[image: menus]

[image: select-stomp]

This opens the STOMP Client, which can be used to pass a message to any of the GridAPPS-D APIs to preview results or debug the API call message.

[image: stomp-client]

Specifying the Topic

The appropriate GridAPPS-D topic needs to be copied and pasted into the Destination Topic box at the top of the window. The topic specifies on which channel the STOMP Client will communicate with the GridAPPS-D Platform and to which API the message needs to be delivered.

A complete list of GridAPPS-D topics was provided in API Communication Channels and will also be provided in context for each of the API calls detailed in subsequent lessons.

IMPORTANT: Remember to remove the python wrapping quotations at the beginning and end of the topic. For example, if the python-wrapped topic was

topic = "goss.gridappsd.process.request.data.powergridmodel" # Specify the topic

then the topic that is entered in the Stomp Client Destination Topic box is simply

goss.gridappsd.process.request.data.powergridmodel

IMPORTANT: The GridAPPSD-Python shortcut functions will not work in the STOMP Client. The full text string versions must be used.

Entering the Request Message

The Request box accepts an API call message identical to those provided in these notebook lessons.

IMPORTANT: Remember to remove the python wrapping at the beginning and end of the message. For example, if the python-wrapped message was

message = "{"requestType": "QUERY_MODEL_NAMES", "resultFormat": "JSON"}" # Sample PowerGrid Model API Call

then the message that is entered in the Stomp Client Request box is simply

{"requestType": "QUERY_MODEL_NAMES", "resultFormat": "JSON"}

The STOMP client will automatically flag any errors in the JSON message.

Submitting a Request

After entering the topic and message, click Send request to send the API call to the GridAPPS-D Platform. The response will be displayed in the box below.

[image: stomp-output]

It can be seen that the response from the STOMP Client is identical to that obtained by passing the same topic and message using the GridAPPSD-Python Library:

[]:

from gridappsd import GridAPPSD # Import Libraries
gapps = GridAPPSD("('localhost', 61613)", username='system', password='manager') # Connect to Platform
topic = "goss.gridappsd.process.request.data.powergridmodel" # Specify correct Topic
message = {
 "requestType": "QUERY_MODEL_NAMES",
 "resultFormat": "JSON"
} # Sample PowerGrid Model API message
gapps.get_response(topic, message) # Pass API call to Platform

[image: GridAPPS-D-narrow.png]

Using the PowerGrid Models API

Introduction to the PowerGrid Model API

The PowerGrid Models API is used to pull model information from the Blazegraph Database, inlcuding the names, mRIDs, measurements, and nominal values of power system equipment in the feeder (such as lines, loads, switches, transformers, and DERs).

In the Application Components diagram (explained in detail with sample code in GridAPPS-D Application Structure), the PowerGrid Models API is used for querying for the power system model and querying for model measurement MRIDs.

[image: power grid models]

API Syntax Overview

Application passes query to GridAPPS-D Platform

First, the application creates a query message for requesting information about the desired power system components in the format of a JSON string or equivalant Python dictionary object. The syntax of this message is explained in detail below.

The query is sent using gapps.get_response(topic, message) with a response expected back from the platform within the specified timeout period.

The application then passes the query through the PowerGrid Models API to the GridAPPS-D Platform, which publishes it to the goss.gridappsd.process.request.data.powergridmodel queue channel on the GOSS Message Bus. If the app is authenticated and authorized to pass queries, the query message is delivered to the data managers, which obtain the desired information from the Blazegraph Database.

GridAPPS-D Platform responds to Application query

The data managers then publish the response from the Blazegraph Database to the appropriate queue channel. The PowerGrid Models API then returns the desired information back to the application as a JSON message or equivalant Python dictionary object.

API Communication Channel

All queries passed to the PowerGrid Models API need to use the correct communication channel, which is obtained using the GridAPPS-D Topics library.

The PowerGrid Model API uses a /queue/ channel to pull power system model info from the the Blazegraph Database. The base static string used is goss.gridappsd.process.request.data.powergridmodel, which can be called using the .REQUEST_POWERGRID_DATA or .BLAZEGRAPH methods from the topics library.

When developing in python, it is recommended to use the .REQUEST_POWERGRID_DATA method. When using the STOMP client in GridAPPS-D VIZ, it is necessary to use the base static string.

[]:

from gridappsd import topics as t
topic = t.REQUEST_POWERGRID_DATA

Structure of a Query Message

Queries passed to PowerGrid Models API are formatted as python dictionaries or equivalent JSON scripts wrapped as a python string.

message = {
 "requestType": "INSERT QUERY HERE",
 "resultFormat": "JSON",
 "modelId": "OPTIONAL INSERT MODEL mRID HERE",
 "objectType": "OPTIONAL INSERT CIM CLASS HERE",
 "objectId": "OPTIONAL INSERT OBJECT mRID HERE",
 "filter": "OPTIONAL INSERT SPARQL FILTER HERE"
}

The components of the message are as follows:

	"requestType": – Specifies the type of query. Available requestType are listed in the next section.

	"resultFormat": – Specifies the format of the response, can be "JSON", "CSV", or "XML". (CAUTION: the PowerGridModel API uses the key resultFormat, while the Timeseries API uses the key reponseFormat. Using the wrong key for either API will result in a java.lang error.)

	"modelID": – Optional. Used to filter the query to only one particular model whose mRID is specified. Be aware of spelling and capitalization differences between JSON query spelling "modelId" and Python Library spelling model_id.

	"objectType": – Optional. Used to filter the query to only one CIM class of equipment. Speciying the objectID will override any values specified for objectType.

	"objectID": – Optional. Used to filter the query to only one object whose mRID is specified. Specifying the objectID will override any values specified for objectType.

	"filter": – Optional. Used to filter the query using a SPARQL filter. SPARQL queries are covered in the next lesson.

The usage of each of these message components are explained in detail with code block examples below.

Important: Be sure to pay attention to placement of commas (,) at the end of each JSON line. Commas are placed at the end of each line except the last line. Incorrect comma placement will result in a JsonSyntaxException.

All of the queries are passed to the PowerGrid Model API using the .get_response(topic, message) method for the GridAPPS-D platform connection variable.

Specifying the requestType

Below are the possible requestType strings that are used to specify the type of each query. Executable code block examples are provided for each of the requests in the subsections below.

The first group of requestType key-value pairs are for queries for information related to the just the mRIDs of a set of feeders or set of equipment within a particular feeder:

	"requestType": "QUERY_MODEL_NAMES" – Query for the list of all model name mRIDs

	"requestType": "QUERY_OBJECT_IDS" – Query for a list of all mRIDs for objects of a CIM class

The second group of requestType key-value pairs are for queries for Python dictionaries containing all specifics of a set of feeders or set of equipment within a particular feeder:

	"requestType": "QUERY_MODEL_INFO" – Query for the dictionary of all details for all feeders in Blazegraph

	"requestType": "QUERY_OBJECT_DICT" – Query for the dictionary of all details for an object using either its *objectType* OR its *objectID*

The third group of requestType key-value pairs are for obtaining information about CIM objects and attributes:

	"requestType": "QUERY_OBJECT_TYPES" – Query for the types of CIM classes of objects in the model

	"requestType": "QUERY_OBJECT" – Query for CIM attributes of an object using its unique mRID

One of the most important queries is for object measurements. Each piece of equipment has voltage, power, and/or position measurements associated with it. Each measurement has a unique mRID which is different from that of the equipment.

	"requestType": "QUERY_OBJECT_MEASUREMENTS" – Query for all measurement types and mRIDs for an object using either its *objectType* OR its *ObjectID*

The last group of requestType key-value pairs are for queries based on SPARQL filters or complete SPARQL queries. Usage of these two requestType is made in conjunction with custom SPARQL queries given in Sample SPARQL Queries [https://github.com/GRIDAPPSD/CIMHub/blob/master/queries.txt].

	"requestType": "QUERY_MODEL" – Query for all part of a specified model, filtered by object type using a SPARQL filter.

	"requestType": "QUERY" – Query using a complete SPARQL query.

CIM Objects Supported by PowerGrid Models API

Below is a list of CIM object classes that can be queried for using the PowerGrid Models API. Other classes and associated attributes need to be queried for using a custom SPARQL query. Sample SPARQL queries for must custom queries can be found in the CIMHub queries.txt file [https://github.com/GRIDAPPSD/CIMHub/blob/master/queries.txt]

CIM Classes supported by the PowerGrid Models API

	ACLineSegment

	Breaker

	ConnectivityNode

	EnergyConsumer

	EnergySource

	Fuse

	LinearShuntCompensator

	LoadBreakSwitch

	PowerElectronicsConnection

	PowerTransformer

	Recloser

	SynchronousMachine

	TransformerTank

CIM Classes requiring custom SPARQL queries

	ACLineSegmentPhase

	Analog

	Asset

	BaseVoltage

	BatteryUnit

	ConcentricNeutralCableInfo

	CoordinateSystem

	CurrentLimit

	Discrete

	EnergyConsumerPhase

	Feeder

	GeographicalRegion

	House

	IEC61970CIMVersion

	LinearShuntCompensatorPhase

	LoadResponseCharacteristic

	Location

	NoLoadTest

	OperationalLimitSet

	OperationalLimitType

	OverheadWireInfo

	PerLengthPhaseImpedance

	PerLengthSequenceImpedance

	PhaseImpedanceData

	PhotovoltaicUnit

	PositionPoint

	PowerElectronicsConnectionPhase

	PowerTransformerEnd

	PowerTransformerInfo

	RatioTapChanger

	RegulatingControl

	ShortCircuitTest

	SubGeographicalRegion

	Substation

	SwitchPhase

	TapChangerControl

	TapChangerInfo

	TapeShieldCableInfo

	Terminal

	TopologicalIsland

	TopologicalNode

	TransformerCoreAdmittance

	TransformerEndInfo

	TransformerMeshImpedance

	TransformerTankEnd

	TransformerTankInfo

	VoltageLimit

	WirePosition

	WireSpacingInfo

Object mRIDs vs Measurement mRIDs

A key concept in GridAPPS-D and CIM XML power system models is the difference between the object mRID of a piece of equipment and multiple measurement mRIDs associated with its control settings and power flow values.

Measurements differ from the state variables (e.g. those obtained from State Estimator or a power flow calculation) in that the values are measured here and not calculated or estimated. Each Measurement is associated to a PowerSystemResource, and in GridAPPS-D (for now) it is also associated with a Terminal that belongs to the same PowerSystemResource. (Non-electrical measurements, for example weather, would not have the Terminal association).

The measurementType is a string code from IEC 61850, with the following currently suppported:

	PNV – Phase to Neutral Voltage

	VA – Volt-Amperes (apparent power)

	A – Amperes (current)

	POS – Position for switches and transformer taps

Each measurement object has a name, mRID, and phases. In GridAPPS-D, each phase is measured individually so multi-phase codes like ABC should not be used.

Pos measurements will be discrete, for such things as tap position, switch position, or capacitor bank position.

The others will be Analog, with magnitude and optional angle in degrees.

Each MeasurementValue will have a timeStamp and mRID inherited from IdentifiedObject, so the values can be traced.

Object Classes vs Control Attributes

The mRIDs for controlling equipment are generally the same as those obtained using the QUERY_OBJECT_DICT key with the PowerGrid Models API, which is covered below in Query for Object Dicionary.

However, the control attributes for each class of equipment in CIM use a different naming convention than those for the object types. Below is a list of "objectType" used to query for mRIDs using PowerGrid Models API and the associated control "attribute" used in a difference message with Simulation API for each category of power system equipment that are currently supported by the HELICS-GOSS
Bridge.

	Switches

	CIM Class Key: "objectType": "LoadBreakSwitch"

	Control Attribute: "attribute": "Switch.open"

	Values: 1 is open, 0 is closed

	Capacitor Banks:

	CIM Class Key: "objectType": "LinearShuntCompensator"

	Control Attribute: "attribute": "ShuntCompensator.sections"

	Values: 0 is off/open, 1 is on/closed

	Control Attribute: "attribute": "RegulatingControl.enabled"

	Values: false is manual control, true is auto control by GridLab-D

	Control Attribute: "attribute": "RegulatingControl.mode"

	Values: 0 is voltage, 1 is manual, 2 is reactive power, 3 is current

	Control Attribute: "attribute": "RegulatingControl.targetDeadband"

	Values: number (float) for control deadband

	Control Attribute: "attribute": "RegulatingControl.targetValue"

	Values: number (float) for control target value

	Control Attribute: "attribute": "ShuntCompensator.aVRDelay"

	Values: number (float) for control delay in seconds

	Inverter-based DERs:

	CIM Class Key: "objectType": "PowerElectronicsConnection"

	Control Attribute: "attribute": "PowerElectronicsConnection.p"

	Values: number (float) in Watts (not kW)

	Control Attribute: "attribute": "PowerElectronicsConnection.q"

	Values: number (float) in VArs (not kVAr)

	Synchronous Rotating (diesel/LNG) DGs:

	CIM Class Key: "objectType": "SynchronousMachine"

	Control Attribute: "attribute": "RotatingMachine.p"

	Values: number (float) in Watts (not kW)

	Control Attribute: "attribute": "RotatingMachine.q"

	Values: number (float) in VArs (not kVAr)

	Regulating Transformer Tap:

	CIM Class Key: "objectType": "RatioTapChanger"

	Control Attribute: "attribute": "TapChanger.step"

	Values: integer value for tap step from -16 to 16

	Control Attribute: "attribute": "TapChanger.initialDelay"

	Values: number (float) for time delay to change tap

	Control Attribute: "attribute": "TapChanger.lineDropCompensation"

	Values: 0 is manual, 1 is automatic

	Control Attribute: "attribute": "TapChanger.LineDropR"

	Values: number (float) for line resistance

	Control Attribute: "attribute": "TapChanger.LineDropX"

	Values: number (float) for line reactance

	Energy Consumer:

	CIM Class Key: "objectType": "EnergyConsumer"

	Control Attribute: "attribute": "EnergyConsumer.p"

	Values: number (float) for base power of load

The query for RatioTapChanger is not supported in the PowerGrid Models API at the current time. A custom SPARQL query needs to be done using the sample query in `CIMHub Sample Queries <https://github.com/GRIDAPPSD/CIMHub/blob/master/queries.txt>`__

Querying for Model mRIDS

Every piece of equipment has a unique mRID, as explained in Intro to Common Information Model. These mRIDs are used to identify and communicate with equipment in GridAPPS-D.

The set of queries below provide just the mRIDs of equipment matching the query filters. If the full details of equipment are desired (e.g. name and properties), use the Query for Equipment Dictionaries API calls in the next section.

This section outlines the pre-built JSON queries that can be passed to the PowerGrid Model API to obtain mRIDs and other information for all models and feeders stored in the Blazegraph Database.

Query for mRIDs of all Models

This query obtains a list of all the model MRIDs stored in the Blazegraph database.

Query requestType:

	"requestType": "QUERY_MODEL_NAMES"

Allowed parameters:

	"resultFormat": – “XML” / “JSON” / “CSV” – Optional. Will return results as a list in the format selected.

[]:

from gridappsd import topics as t
topic = t.REQUEST_POWERGRID_DATA

message = {
 "requestType": "QUERY_MODEL_NAMES",
 "resultFormat": "JSON"
}

gapps.get_response(topic, message)

The same query can be passed through the STOMP client by specifying the goss.gridappsd.process.request.data.powergridmodel topic and the same message without the python wrapping:

[image: query-object-ids]

Python Library Method

The GridAPPSD-Python library contains a pre-built method for obtaining the mRIDs of all models, providing identical results to those obtained above.

The query_model_names method is associated with the GridAPPSD connection object and returns a list of all the CIM XML classes of objects present in the Blazegraph for a particular model or all models in the database.

[]:

gapps.query_model_names()

Query for mRIDs of Objects in a Feeder

This query is used to obtain all the mRIDs of objects of a particular CIM class in the feeder.

Query responseType is

	"requestType": "QUERY_OBJECT_IDS"

Allowed parameters are:

	"modelId": “model name mRID” – When specified it searches against that model, if empty it will search against all models

	"objectType": “CIM Class” – Optional. Specifies the type of objects you wish to return details for.

	"resultFormat": – “XML” / “JSON” / “CSV” – Will return results as a list in the format selected.

Within a particular feeder, it is possible to query for objects of all the CIM classes supported by PowerGrid Models API (discussed above in CIM Objects Supported by the API). Other types of equipment require custom SPARQL queries.

Note that the RDF URI is not included in the query, only the name of the class, such as "objectType": "ACLineSegment" or "objectType": "LoadBreakSwitch".

[]:

from gridappsd import topics as t
topic = t.REQUEST_POWERGRID_DATA

message = {
 "requestType": "QUERY_OBJECT_IDS",
 "modelId": model_mrid,
 "objectType": "LoadBreakSwitch",
 "resultFormat": "JSON"
}

gapps.get_response(topic, message)

It is possible to then filter the response to just a list of the mRIDs:

[]:

response_obj = gapps.get_response(topic, message)
switch_mrids = response_obj['data']['objectIds']
print(switch_mrids)

The same query can be passed through the STOMP client by specifying the goss.gridappsd.process.request.data.powergridmodel topic and the same message without the python wrapping:

[image: query-object-ids]

Querying for Equipment Dictionaries

This section outlines the pre-built JSON queries that can be passed to the PowerGrid Model API to obtain mRIDs and other information for a particular object or a class of objects for one or more feeders stored in the Blazegraph Database.

All of the examples in this section use the IEEE 13 node model.

[]:

model_mrid = "_49AD8E07-3BF9-A4E2-CB8F-C3722F837B62" # IEEE 13 Node used for all example queries

Query for Dictionary of all Models

This query returns a list of names and MRIDs for all models, substations, subregions, and regions for all available feeders stored in the Blazegraph database.

Query requestType:

	"requestType": "QUERY_MODEL_INFO"

Allowed parameters:

	"resultFormat": – “XML” / “JSON” / “CSV” – Will return results as a list in the format selected.

[]:

from gridappsd import topics as t
topic = t.REQUEST_POWERGRID_DATA

message = {
 "requestType": "QUERY_MODEL_INFO",
 "resultFormat": "JSON"
}

gapps.get_response(topic, message)

The same query can be passed through the STOMP client by specifying the goss.gridappsd.process.request.data.powergridmodel topic and the same message without the python wrapping:

[image: query-model-info]

Python Library Method

The GridAPPSD-Python library contains a pre-built method for requesting the dictionary of all models.

The query_model_info() method is associated with the GridAPPSD connection object and runs the same query as above:

[]:

gapps.query_model_info()

Query for Object Dictionary

This query returns a python dictionary of all the equipment attributes and mRIDs. The query can be for 1) all objects of a particular objectType or 2) for those connected to a particular object based on the objectId.

If neither objectType or objectId is provided, the query will provide the attributes of all the equipment in the power system model.

Query requestType is

	"requestType": "QUERY_OBJECT_DICT"

Allowed parameters are

	"modelId": “model name mRID” – When specified it searches against that model, if empty it will search against all models

	"objectId": “object mRID” – Optional. Specifies the type of objects you wish to return details for.

	"objectType": “CIM Class” – Optional. Specifies the type of objects you wish to return details for.

	"resultFormat": “XML” / “JSON” / “CSV” – Will return results as a list in the format selected.

Speciying the objectId will override any values specified for objectType.

Example 1: Querying for model dictionary for an objectID

[]:

from gridappsd import topics as t
topic = t.REQUEST_POWERGRID_DATA

message = {
 "requestType": "QUERY_OBJECT_DICT",
 "modelId": model_mrid,
 "objectId": switch_mrids[1],
 "resultFormat": "JSON"
}

gapps.get_response(topic, message)

The same query can be passed through the STOMP client by specifying the goss.gridappsd.process.request.data.powergridmodel topic and the same message without the python wrapping:

[image: query-object-dict]

Example 2: Querying for model dictionary for an objectType

[]:

from gridappsd import topics as t
topic = t.REQUEST_POWERGRID_DATA

message = {
 "requestType": "QUERY_OBJECT_DICT",
 "modelId": model_mrid,
 "objectType": "TransformerTank",
 "resultFormat": "JSON"
}

gapps.get_response(topic, message)

The same query can be passed through the STOMP client by specifying the goss.gridappsd.process.request.data.powergridmodel topic and the same message without the python wrapping:

[image: query-object-dict]

Python Library Method

The GridAPPSD-Python library contains a pre-built method for requesting the object dictionary

The query_object_dictionary(model_id, object_type, object_id) method is associated with the GridAPPSD connection object and runs the same query as above to return the object dictionary

[]:

gapps.query_object_dictionary(model_id = model_mrid, object_id = switch_mrids[1])

[]:

gapps.query_object_dictionary(model_id = model_mrid, object_type = "TransformerTank")

Querying for CIM Attributes

Query for CIM Classes of Objects in Model

This query is used to query for a list of all the CIM XML classes of objects present in the Blazegraph for a particular model or all models (if model name mRID is empty) in the database.

Query requestType is

	"requestType": "QUERY_OBJECT_TYPES"

Allowed parameters are

	"modelId": “model name mRID” – Optional. Searches only the particular model identified by the given unique mRID

	"resultFormat": – “XML” / “JSON” / “CSV” – Will return results as a list in the format selected.

1) Query entire Blazegraph database

Omit the "modelId" parameter to search the entire blazegraph database.

[]:

from gridappsd import topics as t
topic = t.REQUEST_POWERGRID_DATA

message = {
 "requestType": "QUERY_OBJECT_TYPES",
 "resultFormat": "JSON"
}

gapps.get_response(topic, message)

The same query can be passed through the STOMP client by specifying the goss.gridappsd.process.request.data.powergridmodel topic and the same message without the python wrapping:

[image: query-object-types]

2) Query for only a particular model

Specify the model MRID as a python string and pass it as a parameter to the method to return only the CIM classes of objects in that particular model.

Be aware of spelling and capitalization differences between JSON query spelling "modelId" and Python Library spelling model_id.

[]:

from gridappsd import topics as t
topic = t.REQUEST_POWERGRID_DATA

message = {
 "requestType": "QUERY_OBJECT_TYPES",
 "modelId": model_mrid,
 "resultFormat": "JSON"
}

gapps.get_response(topic, message)

The same query can be passed through the STOMP client by specifying the goss.gridappsd.process.request.data.powergridmodel topic and the same message without the python wrapping:

[image: query-object-types-2]

Python Library Method

The GridAPPSD-Python library contains a pre-built method for obtaining all the CIM classes in the model, providing identical results to those obtained above.

The query_object_types method is associated with the GridAPPSD connection object and returns a list of all the CIM XML classes of objects present in the Blazegraph for a particular model or all models in the database.

Allowed parameters are

	model_id (optional) - when specified, it searches only the particular model identified by the given unique mRID

1) Query entire Blazegraph database

Leave the arguments blank to search all models in the Blazegraph database

[]:

gapps.query_object_types()

2) Query for only a particular model

Specify the model MRID as a python string and pass it as a parameter to the method to return only the CIM classes of objects in that particular model

[]:

gapps.query_object_types(model_mrid)

Query for CIM Attributes of an Object

This query is used to obtain all the attributes and mRIDs of those attributes for a particular object whose mRID is specified.

Query responseType is

	"requestType": "QUERY_OBJECT"

Allowed parameters are:

	"modelId": “model name mRID” – When specified it searches against that model, if empty it will search against all models

	"objectId": “object mRID” – Optional. Specifies the type of objects you wish to return details for.

	"resultFormat": – “XML” / “JSON” / “CSV” – Will return results as a list in the format selected.

[]:

from gridappsd import topics as t
topic = t.REQUEST_POWERGRID_DATA

object_mrid = "_2858B6C2-0886-4269-884C-06FA8B887319"

message = {
 "requestType": "QUERY_OBJECT",
 "resultFormat": "JSON",
 "modelId": model_mrid,
 "objectId": object_mrid
}

gapps.get_response(topic, message)

The same query can be passed through the STOMP client by specifying the goss.gridappsd.process.request.data.powergridmodel topic and the same message without the python wrapping:

[image: query-object]

Python Library Method

The GridAPPSD-Python library contains a pre-built method for obtaining the mRIDs of all models, providing identical results to those obtained above.

The query_object method is associated with the GridAPPSD connection object and returns a list of all the CIM XML classes of objects present in the Blazegraph for a particular model or all models in the database.

[]:

model_mrid = "_49AD8E07-3BF9-A4E2-CB8F-C3722F837B62" # IEEE 13 Node used for all example queries
object_mrid = "_2858B6C2-0886-4269-884C-06FA8B887319"

gapps.query_object(model_mrid, object_mrid)

Querying for Object Measurements

Querying for Measurements

This query returns details for the measurements within a model. The query can be for 1) all objects of a particular objectType or 2) for those connected to a particular object based on the objectId.

If neither objectType or objectId is provided, the query will provide all measurements belonging to the model. Query responseType is

	"requestType": "QUERY_OBJECT_MEASUREMENTS"

Allowed parameters are:

	"modelId": “model name mRID” – When specified it searches against that model, if empty it will search against all models

	"objectId": “object mRID” – Optional. Specifies the type of objects you wish to return details for.

	"objectType": “CIM Class” – Optional. Specifies the type of objects you wish to return details for.

	"resultFormat": “XML” / “JSON” / “CSV” – Will return results as a list in the format selected.

Speciying the objectId will override any values specified for objectType.

Example 1: Querying for all measurements for an objectID

[]:

from gridappsd import topics as t
topic = t.REQUEST_POWERGRID_DATA

message = {
 "requestType": "QUERY_OBJECT_MEASUREMENTS",
 "modelId": model_mrid,
 "objectId": switch_mrids[1],
 "resultFormat": "JSON"
}

gapps.get_response(topic, message)

The same query can be passed through the STOMP client by specifying the goss.gridappsd.process.request.data.powergridmodel topic and the same message without the python wrapping:

[image: query-object]

Example 2: Querying for all measurements for an objectType

[]:

from gridappsd import topics as t
topic = t.REQUEST_POWERGRID_DATA

message = {
 "requestType": "QUERY_OBJECT_MEASUREMENTS",
 "modelId": model_mrid,
 "objectType": "ACLineSegment",
 "resultFormat": "JSON"
}

gapps.get_response(topic, message)

The same query can be passed through the STOMP client by specifying the goss.gridappsd.process.request.data.powergridmodel topic and the same message without the python wrapping:

[image: query-object]

Filtering Returned Data

After receiving the python dictionary of measurements, it will be necessary to parse it to inlcude just the desired set of measurements. This is done using the method presented in Parsing Returned Data

[]:

Create query message to obtain measurement mRIDs for all switches
message = {
 "modelId": model_mrid,
 "requestType": "QUERY_OBJECT_MEASUREMENTS",
 "resultFormat": "JSON",
 "objectType": "LoadBreakSwitch"
}

Pass query message to PowerGrid Models API
response_obj = gapps.get_response(t.REQUEST_POWERGRID_DATA, message)
measurements_obj = response_obj["data"]

Switch position measurements (Pos)
Pos_obj = [k for k in measurements_obj if k['type'] == 'Pos']

Switch terminal phase-neutral-voltage measurements (PNV)
PNV_obj = [k for k in measurements_obj if k['type'] == 'PNV']

Switch volt-ampere apparent power measurements (VA)
VA_obj = [k for k in measurements_obj if k['type'] == 'VA']

Switch current measurements (A)
A_obj = [k for k in measurements_obj if k['type'] == 'A']

Querying with a Custom SPARQL String

This section outlines how the PowerGrid Models API can be used to pass custom SPARQL queries for CIM objects and properties that do not have pre-built JSON string queries.

Query using a SPARQL filter

This query returns a dictionary of all objects matching the particular filter. The query can be for 1) all objects of a particular objectType or 2) those with attributes corresponding to a particular SPARQL filter, or both.

If neither objectType or filter is specified, the query will provide all objects belonging to the model.

Query responseType is

	"requestType": "QUERY_MODEL"

Allowed parameters are:

	"modelId": “model name mRID” – Optional. When specified it searches against that model, if empty it will search against all models

	"objectType": “CIM Class” – Optional. Specifies the type of objects you wish to return details for.

	"filter": “SPARQL triple” – Optional. Applies the SPARQL triple filter to the query results

	"resultFormat": “XML” / “JSON” / “CSV” – Will return results as a list in the format selected.

[]:

from gridappsd import topics as t
topic = t.REQUEST_POWERGRID_DATA

message = {
 "requestType": "QUERY_MODEL",
 "modelId": "_49AD8E07-3BF9-A4E2-CB8F-C3722F837B62" ,
 "resultFormat": "JSON",
 "filter": "?s cim:IdentifiedObject.name '650z'",
 "objectType": "http://iec.ch/TC57/CIM100#ConnectivityNode"
}

gapps.get_response(topic, message, timeout = 60)

The same query can be passed through the STOMP client by specifying the goss.gridappsd.process.request.data.powergridmodel topic and the same message without the python wrapping:

[image: query-model]

Python Library Method

The GridAPPSD-Python library contains a pre-built method for passing very simple queries. The SPARQL filter key is not supported.

The .query_model(model_id, object_type, object_id) method is associated with the GridAPPSD connection object and runs the generic SPARQL query on the Blazegraph database. object_type uses the full http://iec.ch/TC57/CIM100# prefix. object_id is the mRID of the desired object.

[]:

gapps.query_model(model_id = model_mrid, object_type = "http://iec.ch/TC57/CIM100#ConnectivityNode")

[]:

gapps.query_model(model_id = model_mrid, object_id = "_7BEDDADD-0A14-429F-8601-9EA8B892CA6E")

Query using a Generic SPARQL Query

This query is used to pass a generic SPARQL query to the Blazegraph database.

Query responseType is

	"requestType": "QUERY"

Allowed parameters are:

	"modelId": “model name mRID” – Optinal. When specified it searches against that model, if empty it will search against all models

	"queryString": “SPARQL query text” – Applies the SPARQL triple filter to the query results

	"resultFormat": “XML” / “JSON” / “CSV” – Will return results as a list in the format selected.

[]:

from gridappsd import topics as t
topic = t.REQUEST_POWERGRID_DATA

message = {
 "requestType": "QUERY",
 "queryString": "select ?feeder_name ?subregion_name ?region_name WHERE {?line r:type c:Feeder.?line c:IdentifiedObject.name ?feeder_name.?line c:Feeder.NormalEnergizingSubstation ?substation.?substation r:type c:Substation.?substation c:Substation.Region ?subregion.?subregion c:IdentifiedObject.name ?subregion_name .?subregion c:SubGeographicalRegion.Region ?region . ?region c:IdentifiedObject.name ?region_name}",
 "resultFormat": "JSON"
}

gapps.get_response(topic, message)

Although it is possible to check these queries using the STOMP client, it is recommended to validate generic SPARQL queries using the Blazegraph Workbench hosted on localhost:8889/bigdata/#query. The STOMP client contains a JSON validator which may struggle with the line breaks included in SPARQL queries.

Python Library Method

The GridAPPSD-Python library contains a pre-built method for passing generic SPARQL queries

The query_data(query, timeout) method is associated with the GridAPPSD connection object and runs the generic SPARQL query on the Blazegraph database.

[]:

sparql_message = "select ?feeder_name ?subregion_name ?region_name WHERE {?line r:type c:Feeder.?line c:IdentifiedObject.name ?feeder_name.?line c:Feeder.NormalEnergizingSubstation ?substation.?substation r:type c:Substation.?substation c:Substation.Region ?subregion.?subregion c:IdentifiedObject.name ?subregion_name .?subregion c:SubGeographicalRegion.Region ?region . ?region c:IdentifiedObject.name ?region_name}"

gapps.query_data(query = sparql_message, timeout = 60)

Available Models in Default Installation

The GridAPPS-D Platform comes by default loaded with several distribution feeders ranging in size from 13 to 9500 nodes. Each feeder and recommended usage cases are summarized below.

	Name

	Features

	Houses

	Buses

	Nodes

	Branches

	Load

	Origin

	ACEP_PSIL

	480-volt microgrid with PV, wind and diesel

	No

	8

	24

	13

	0.28

	UAF

	EPRI_DPV_J1

	1800 kW PV in 11 locations

	No

	3434

	4245

	4901

	9.69

	EPRI DPV

	IEEE13

	Added CIM sampler

	No

	22

	57

	51

	3.44

	IEEE (mod)

	IEEE13_Assets

	Uses line spacings and wires

	No

	16

	41

	40

	3.58

	IEEE (mod)

	IEEE13_OCHRE

	Added 40 service transformers and triplex loads

	Yes

	74

	160

	75

	0.24

	IEEE (mod)

	IEEE37

	Delta system

	No

	39

	117

	73

	2.59

	IEEE

	IEEE123

	Includes switches for reconfiguration

	No

	130

	274

	237

	3.62

	IEEE

	IEEE123_PV

	Added 3320 kW PV in 14 locations

	Yes

	214

	442

	334

	0.27

	IEEE/NREL

	IEEE8500

	Large model, balanced secondary loads

	Yes

	4876

	8531

	6103

	11.98

	IEEE

	IEEE9500

	Added 2 grid sources and DER

	Yes

	5294

	9499

	6823

	9.14

	GridAPPS-D

	R2_12_47_2

	Supports approximately 4000 houses

	Yes

	853

	1631

	1086

	6.26

	PNNL

	Transactive

	Added 1281 secondary loads to IEEE123

	Yes

	1516

	3051

	2812

	3.92

	GridAPPS-D

IEEE 13 Node Model

This is a very small distribution test feeder operating at 4.16 kV voltage level. It consists of a single voltage regulator at the substation, overhead and underground lines, shunt capacitor, and an in-line transformer. This feeder is relatively highly loaded and provides a good test of the convergence of the problem for a very unbalanced system.

This model is recommended for debugging as the model is small enough that issues can be traced by hand.

IEEE 123 Node Model

This models a medium-sized unbalanced distribution system operating at the nominal voltage of 4.16 kV. It consists of overhead and underground lines with single, two and three-phase laterals, along with step regulators and shunt capacitors for voltage regulation. The feeder model is characterized by the unbalanced loading having all combinations of load types (constant current, impedance, and power). It also includes a few switches to allow for the alternate paths for the power flow via feeder
reconfiguration.

This model is recommended for initial app testing and debugging thorugh the first stages of development.

IEEE 123 Node Model with PV

This model is a derivative of the IEEE 123 Node model and includes rooftop solar throughout the system.

IEEE 8500 Node Model

This is a relatively large and realistic radial distribution feeder consisting of MV and LV (secondary) circuits [21]. Unlike other test systems, this feeder also includes 120/240V center-tapped transformers that are commonly deployed in North American power distribution systems. Thus, it allows for users to interchange between the two versions of loading conditions: balanced (208 V) and unbalanced (120 V) in the secondary transformers. Voltage control is possible using a substation LTC
transformer, as well as multiple poletop regulators and capacitor banks. The feeder was created to test scalability and convergence of power flow algorithms on a large unbalanced power distribution system.

	Length: 170 km

	Nominal voltage: 12.47 kV, 120/240V

	Topology: radial

	Service transformers: yes

	Customers: 1177

	Peak load: 11.1 MW

	Normally-open switches: no

9500 Node Test System

The 9500 Node Test System includes three radial distribution feeders with just over 12 MW of load, consisting of both medium voltage and low voltage equipment each supplied by a different distribution substation. The three distribution feeders are connected to each other through Normally-Open switches, which is representative of the way many utilities operate in North America. One feeder represents today’s grid with low penetration of customer-side renewables. The second represents a potential
future grid with microgrids and 100% renewable penetration. The third has no customer resources, a district steam plant, and a utility-scale PV farm. All three feeders have customers connected by low-voltage secondary triplex lines.

This is the recommended target feeder for development of all new applications

[image: 9500-node-DGs]

PNNL Taxonomy Feeder

EPRI J1 Feeder

UAF Microgrid

Adding New Models to GridAPPS-D

	git clone https://github.com/GRIDAPPSD/CIMHub.git

	pip install SPARQLWrapper numpy pandas

Copy CIM XML file and UUID file into CIMHub directory.

Open CIMHub directory in terminal:

	cd CIMHub

View the list of feeder models currently in the Blazegraph Database:

	python3 ../CIMHub/utils/ListFeeders.py

Upload your new model using curl to Blazegraph, specifying the name and MRID of your new feeder:

	curl -s -D- -H 'Content-Type: application/xml' --upload-file 'yournewmodel.xml' -X POST 'http://localhost:8889/bigdata/namespace/kb/sparql'

Create the set of txt files containing the measurable objects in your new model using the ListMeasurables script:

	python3 ../CIMHub/utils/ListMeasureables.py cimhubconfig.json yournewmodel _YOUR-NEW-MODEL-FEEDER-MRID-123ABC456

Insert the measurements into Blazegraph using the InsertMeasurements script. The measurement MRIDs will be saved into the file uuidfile.json:

	for f in `ls -1 *txt`; do python3 ../CIMHub/utils/InsertMeasurements.py cimhubconfig.json $f uuidfile.json; done

Insert houses into Blazegraph using the InsertHouses script. The measurement MRIDs for the houses will be saved into the file uuidfile2.json: * python3 ../CIMHub/utils/InsertHouses.py cimhubconfig.json _YOUR-NEW-MODEL-FEEDER-MRID-123ABC456 1 1 uuidfile2.json

Open the GridAPPS-D Viz in a new window and you should be able to start a simulation using your new model

Adding New Models to the PowerGrid Models GitHub Repo

All models included by default in GridAPPS-D are stored in the PowerGrid Models GitHub repository [https://github.com/GRIDAPPSD/Powergrid-Models/]

[image: GridAPPS-D-narrow.png]

Using the Configuration File API

Introduction to the Configuration File API

The Configuration File API is used to generate power system models that can be solved in GridLab-D or OpenDSS based on the original CIM XML model. The load profile and ZIP parameters can be modified from the nominal values prior to model creation and export.

In the Application Components diagram (explained in detail with sample code in GridAPPS-D Application Structure), the Configuration File API is used for configuring parallel simulations and exporting the power system model.

[image: 04-config-sim-export]

API Syntax Overview

Application passes query to GridAPPS-D Platform

First, the application creates a query message for requesting information about the desired power system configuration in the format of a JSON string or equivalant Python dictionary object. The syntax of this message is explained in detail below.

The application then passes the query through the Configuration File API to the GridAPPS-D Platform, which publishes it to a queue channel on the GOSS Message Bus. If the app is authenticated and authorized to pass queries, the query message is delivered to the Configuration Manager.

GridAPPS-D Platform responds to Application query

The Configuration Manager obtains the CIM XML file for the desired power system model and then converts it to the desired output format with all of the requested changes to the model. The Configuration File API then returns the desired information back to the application as a JSON message (for Y-Bus or partial models) or export the files to the directory specified in the

API Communication Channel

All queries passed to the PowerGrid Models API need to use the correct communication channel, which is obtained using the GridAPPS-D Topics library.

The PowerGrid Model API uses a /queue/ channel to pull power system model info from the the Blazegraph Database. The base static string used is goss.gridappsd.process.request.config, which can be called using the .CONFIG method from the topics library.

When developing in python, it is recommended to use the .CONFIG method. When using the STOMP client in GridAPPS-D VIZ, it is necessary to use the base static string.

[]:

from gridappsd import topics as t
topic = t.CONFIG

Structure of a Query Message

Queries passed to Configuration File API are formatted as python dictionaries or equivalent JSON scripts wrapped as a python string.

The accepted set of key-value pairs for the Configuration File API query message is

message = {
 "configurationType": "INSERT QUERY HERE",
 "parameters": {
 "key1": "value1",
 "key2": "value2"}
}

The components of the message are as follows:

	"configurationType": – Specifies the type of configuration file requested.

	"parameters": – Specifies any specific power system model parameters. Values depend on the particular configurationType.

The usage of each of these message components are explained in detail with code block examples below.

Important: Be sure to pay attention to placement of commas (,) at the end of each JSON line. Commas are placed at the end of each line except the last line. Incorrect comma placement will result in a JsonSyntaxException.

All of the queries are passed to the Configuration API using the .get_response(topic, message) method for the GridAPPS-D platform connection variable.

Specifying the configurationType

Below are the possible configurationType key-value pairs that are used to specify the type of each query. Executable code block examples are provided for each of the requests in the subsections below.

The first group of configurationType key-value pairs are for queries for information related to the GridLab-D GLM files and settings:

	"configurationType": "GridLab-D All" – Export all GridLab-D files

	"configurationType": "GridLab-D Base GLM" – Query for GridLab-D base GLM file

	"configurationType": "GridLab-D Symbols" – Query for GridLab-D symbols file

	"configurationType": "GridLab-D Simulation Output" – Query for available measurement types

The second group of configurationType key-value pairs are for queries for OpenDSS model files

	"configurationType": "DSS All" – Export all OpenDSS model files

	"configurationType": "DSS Base" – Query for OpenDSS version of power system model

	"configurationType": "DSS Coordinate" – Query for list of OpenDSS XY coordinates

	"configurationType": "YBus Export" – Export Y-Bus matrix from OpenDSS

The third group of configurationType are for queries for CIM dictionary and feeder index files:

	"configurationType": "CIM Dictionary" – Query for python dictionary of CIM XML model

	"configurationType": "CIM Feeder Index" – Query for python dictionary of model mRIDs

Querying for GridLab-D Configuration Files

This section outlines the details of key-value pairs for the possible queries associated with each value of the queryMeasurement key listed above for obtaining or exporting GridLAB-D Files

Export all GridLab-D Files

This API call generates all the GLM files necessary to solve the power system model in GridLab-D. The query returns a directory where the set of GLM files are located inside the GridAPPS-D docker container.

Configuration File request key-value pair:

	"configurationType": "GridLab-D All"

The parameters key has a set of required values as well as some optional values:

"parameters": { REQUIRED KEYS REQUIRED VALUES
 "model_id": mRID as string ,
 "directory": output directory as string ,
 "simulation_name": string ,
 "simulation_start_time": epoch time number ,
 "simulation_duration": number ,
 "simulation_id": number ,
 "simulation_broker_host": string ,
 "simulation_broker_port": number ,
 OPTIONAL KEYS OPTIONAL VALUES
 "i_fraction": number ,
 "p_fraction": number ,
 "z_fraction": number ,
 "load_scaling_factor": number ,
 "schedule_name": string ,
 "solver_method": string }

The numeric values for the key-value pairs associated with parameters can be written as number or as strings. The key-value pairs can be specified in any order.

This API call requires a valid simulation_id for the desired power system model.

Prior to running this query, start a simulation of the desired power system model using the GridAPPS-D Viz or using the Simulation API.

Copy the simulation id from Viz by left-clicking on the simulation ID or from your application’s API call:

[image: copy-sim-id]

Example: Export IEEE 13 node model with constant current loads to GLM files :

[]:

from gridappsd import topics as t
topic = t.CONFIG

message = {
 "configurationType": "GridLAB-D All",
 "parameters": {
 "directory": "/tmp/gridlabdsimulation/",
 "model_id": model_mrid,
 "simulation_id": "12345678",
 "simulation_name": "mysimulation",
 "simulation_start_time": "1518958800",
 "simulation_duration": "60",
 "simulation_broker_host": "localhost",
 "simulation_broker_port": "61616",
 "schedule_name": "ieeezipload",
 "load_scaling_factor": "1.0",
 "z_fraction": "0.0",
 "i_fraction": "1.0",
 "p_fraction": "0.0",
 "solver_method": "NR" }
}

gapps.get_response(topic, message, timeout = 120)

The same query can be passed through the STOMP client by specifying the goss.gridappsd.process.request.data.config topic and the same message without the python wrapping:

[image: gridlab-d-all]

Note: The output directory is inside the GridAPPS-D Docker Container, not in your Ubuntu or Windows environment. To access the files, it is necessary to change directories to those inside the docker container.

Open a new Ubuntu terminal and run: * docker exec -it gridappsd-docker_gridappsd_1 bash * cd /tmp/gridlabdsimulation * ls -l

To copy the files to your regular directory, use the docker cp command. For help using docker, see Docker Shortcuts on working with Docker containers.

[image: config-file-docker-directory]

Query for GridLab-D Base GLM File

This API call generates a single GLM file that contains the entire power system model that can be solved in GridLab-D. The query returns the entire model GLM file wrapped in a python dictionary.

Configuration File request key-value pair:

	"configurationType": "GridLab-D Base GLM"

The parameters key has a set of required values as well as some optional values:

"parameters": { REQUIRED KEYS REQUIRED VALUES
 "model_id": mRID as string ,
 OPTIONAL KEYS OPTIONAL VALUES
 "i_fraction": number ,
 "p_fraction": number ,
 "z_fraction": number ,
 "load_scaling_factor": number ,
 "schedule_name": string }

The numeric values for the key-value pairs associated with parameters can be written as number or as strings. The key-value pairs can be specified in any order.

Example 1: Create GLM base file using nominal load values:

[]:

from gridappsd import topics as t
topic = t.CONFIG

message = {
 "configurationType": "GridLAB-D Base GLM",
 "parameters": {"model_id": model_mrid}
}

gapps.get_response(topic, message, timeout = 60)

The same query can be passed through the STOMP client by specifying the goss.gridappsd.process.request.config topic and the same message without the python wrapping:

[image: GridLAB-D-Base-GLM]

Example 2: Create GLM base file using all constant current loads and hourly load curve:

[]:

from gridappsd import topics as t
topic = t.CONFIG

message = {
 "configurationType": "GridLAB-D Base GLM",
 "parameters": {
 "model_id": model_mrid,
 "load_scaling_factor": "1.0",
 "z_fraction": 0.0,
 "i_fraction": 1.0,
 "p_fraction": "0.0",
 "schedule_name": "ieeezipload"}
}

gapps.get_response(topic, message, timeout = 60)

The same query can be passed through the STOMP client by specifying the goss.gridappsd.process.request.config topic and the same message without the python wrapping:

[image: GridLAB-D-Base-GLM-2]

Query for GridLab-D Symbols File

This API call generates a python dictionary with all the XY coordinates used by GridLab-D when running a simulation.

Configuration File request key-value pair:

	"configurationType": "GridLab-D Symbols"

The parameters key has a set of required values as well as some optional values:

"parameters": { REQUIRED KEYS REQUIRED VALUES
 "model_id": mRID as string ,
 OPTIONAL KEYS OPTIONAL VALUES
 "simulation_id": number }

The key-value pairs can be specified in any order.

[]:

from gridappsd import topics as t
topic = t.CONFIG

message = {
 "configurationType": "GridLAB-D Symbols",
 "parameters": { "model_id": model_mrid }
}

gapps.get_response(topic, message, timeout = 60)

Query for GridLab-D Measurement Types

This API call returns a list of device names and types of available measurement in the GridLab-D format (not CIM classes or measurement mRIDs)

Configuration File request key-value pair:

	"configurationType": "GridLab-D Simulation Output"

The parameters key has a set of required values as well as some optional values:

"parameters": { REQUIRED KEYS REQUIRED VALUES
 "simulation_id": number or string,
 OPTIONAL KEYS OPTIONAL VALUES
 "model_id": mRID as string }

The key-value pairs can be specified in any order.

This API call requires a valid simulation_id for the desired power system model.

Prior to running this query, start a simulation of the desired power system model using the GridAPPS-D Viz or using the Simulation API.

Copy the simulation id from Viz by left-clicking on the simulation ID or from your application’s API call:

[]:

from gridappsd import topics as t
topic = t.CONFIG

message = {
 "configurationType": "GridLAB-D Simulation Output",
 "parameters": {"model_id": model_mrid,
 "simulation_id": "742794085"}
}

gapps.get_response(topic, message, timeout = 60)

The same query can be passed through the STOMP client by specifying the goss.gridappsd.process.request.config topic and the same message without the python wrapping:

[image: GridLAB-D-simulation-output]

Querying for OpenDSS Configuration Files

This section outlines the details of key-value pairs for the possible queries associated with each value of the queryMeasurement key listed above for obtaining or exporting OpenDSS Files

Export all OpenDSS Files

This API call generates all the OpenDSS files necessary to solve the power system model in OpenDSS. The query returns a directory where the set of DSS files are located.

Configuration File request key-value pair:

	"configurationType": "DSS All"

The parameters key has a set of required values as well as some optional values:

"parameters": { REQUIRED KEYS REQUIRED VALUES
 "model_id": mRID as string ,
 "directory": desired output directory as string ,
 "simulation_name": string ,
 "simulation_start_time": epoch time number ,
 "simulation_duration": number ,
 "simulation_id": number ,
 "simulation_broker_host": string ,
 "simulation_broker_port": number ,
 OPTIONAL KEYS OPTIONAL VALUES
 "i_fraction": number ,
 "p_fraction": number ,
 "z_fraction": number ,
 "load_scaling_factor": number ,
 "schedule_name": string ,
 "solver_method": string }

The numeric values for the key-value pairs associated with parameters can be written as number or as strings. The key-value pairs can be specified in any order.

Example: Export IEEE 13 node model with constant current loads to DSS files :

[]:

from gridappsd import topics as t
topic = t.CONFIG

message = {
 "configurationType": "DSS All",
 "parameters": {
 "directory": "/tmp/dsssimulation/",
 "model_id": model_mrid,
 "simulation_id": "12345678",
 "simulation_name": "ieee13",
 "simulation_start_time": "1518958800",
 "simulation_duration": "60",
 "simulation_broker_host": "localhost",
 "simulation_broker_port": "61616",
 "schedule_name": "ieeezipload",
 "load_scaling_factor": "1.0",
 "z_fraction": "0.0",
 "i_fraction": "1.0",
 "p_fraction": "0.0",
 "solver_method": "NR" }
}

gapps.get_response(topic, message, timeout = 60)

Note: The output directory is inside the GridAPPS-D Docker Container, not in your Ubuntu or Windows environment. To access the files, it is necessary to change directories to those inside the docker container.

Open a new Ubuntu terminal and run: * docker exec -it gridappsd-docker_gridappsd_1 bash * cd /tmp/dssdsimulation * ls -l

To copy the files to your regular directory, use the docker cp command. For help using docker, see Docker Shortcuts on working with Docker containers.

Query for OpenDSS Base File

This API call generates a single DSS file that contains the entire power system model that can be solved in OpenDSS. The query returns the entire model DSS file wrapped in a python dictionary.

Configuration File request key-value pair:

	"configurationType": "DSS Base"

The parameters key has a set of required values as well as some optional values:

"parameters": { REQUIRED KEYS REQUIRED VALUES
 "model_id": mRID as string ,
 OPTIONAL KEYS OPTIONAL VALUES
 "i_fraction": number ,
 "p_fraction": number ,
 "z_fraction": number ,
 "load_scaling_factor": number ,
 "schedule_name": string }

The numeric values for the key-value pairs associated with parameters can be written as number or as strings. The key-value pairs can be specified in any order.

Example 1: Create OpenDSS base file using nominal load values:

[]:

from gridappsd import topics as t
topic = t.CONFIG

message = {
 "configurationType": "DSS Base",
 "parameters": {"model_id": model_mrid}
}

gapps.get_response(topic, message, timeout = 60)

The same query can be passed through the STOMP client by specifying the goss.gridappsd.process.request.config topic and the same message without the python wrapping:

[image: dss-base]

Example 2: Create OpenDSS base file using all constant current loads and hourly load curve:

[]:

message = {
 "configurationType": "DSS Base",
 "parameters": {
 "model_id": model_mrid,
 "load_scaling_factor": "1.0",
 "z_fraction": 0.0,
 "i_fraction": 1.0,
 "p_fraction": "0.0",
 "schedule_name": "ieeezipload"}
}

gapps.get_response(topic, message, timeout = 60)

The same query can be passed through the STOMP client by specifying the goss.gridappsd.process.request.config topic and the same message without the python wrapping:

[image: dss-base-2]

Query for OpenDSS Coordinate File

This API call generates a file with all the XY coordinates used by OpenDSS when plotting the feeder.

Configuration File request key-value pair:

	"configurationType": "DSS Coordinate"

The parameters key has a set of required values as well as some optional values:

"parameters": { REQUIRED KEYS REQUIRED VALUES
 "model_id": mRID as string ,
 OPTIONAL KEYS OPTIONAL VALUES
 "simulation_id": number }

The key-value pairs can be specified in any order.

[]:

from gridappsd import topics as t
topic = t.CONFIG

message = {
 "configurationType": "DSS Coordinate",
 "parameters": {"model_id": model_mrid}
}

gapps.get_response(topic, message)

The same query can be passed through the STOMP client by specifying the goss.gridappsd.process.request.config topic and the same message without the python wrapping:

[image: dss-coordinate]

Query for Y-Bus Matrix

This API call generates a Y-Bus matrix from either the model mRID or the simulation id.

Note: The GridAPPS-D platform currently does not have an in-built topology processor, so the Y-Bus matrix is NOT updated during the simulation to reflect switching actions or transformer tap changes that happen in real time.

Real-time Y-bus matrix output will be available from the future Dynamic Y-bus Service from the GridAPPS-D App Toolbox.

Configuration File request key-value pair:

	"configurationType": "YBus Export"

The parameters key has a set of required values as well as some optional values:

"parameters": { REQUIRED KEYS REQUIRED VALUES
 "model_id": mRID as string ,
 OR
 "simulation_id": number }

The key-value pairs can be specified in any order.

Example 1: Request Y-Bus for IEEE 13 node model using model mRID:

[]:

from gridappsd import topics as t
topic = t.CONFIG

message = {
 "configurationType": "YBus Export",
 "parameters": {"model_id": model_mrid}
}

gapps.get_response(topic, message)

The same query can be passed through the STOMP client by specifying the goss.gridappsd.process.request.config topic and the same message without the python wrapping:

[image: ybus-export]

Example 2: Request Y-Bus for IEEE 13 node model with all loads set as constant current using model mRID:

[]:

from gridappsd import topics as t
topic = t.CONFIG

message = {
 "configurationType": "YBus Export",
 "parameters": {
 "model_id": model_mrid,
 "load_scaling_factor": "2.0",
 "schedule_name": "ieeezipload",
 "z_fraction": "0.4",
 "i_fraction": "0.3",
 "p_fraction": "0.3" }
}

gapps.get_response(topic, message)

The same query can be passed through the STOMP client by specifying the goss.gridappsd.process.request.config topic and the same message without the python wrapping:

[image: ybus-export-3]

Example 3: Obtain Y-Bus from simulation_id:

[]:

viz_simulation_id = "paste id here"

[]:

topic = "goss.gridappsd.process.request.config"

message = {
 "configurationType":"YBus Export",
 "parameters":{"simulation_id": viz_simulation_id}
}

gapps.get_response(topic, message)

The same query can be passed through the STOMP client by specifying the goss.gridappsd.process.request.config topic and the same message without the python wrapping:

[image: ybus-export-3]

Querying for CIM Dictionary Files

This section outlines the details of key-value pairs for the possible queries associated with each value of the queryMeasurement key listed above for obtaining or dictionaries of CIM objects used for file conversion.

Query for Model Dictionary

This API generates a python dictionary which maps the CIM mRIDs of objects in the power system model to names of model objects used in other simulators.

Configuration File request key-value pair:

	"configurationType": "CIM Dictionary"

The parameters key has a set of required values as well as some optional values:

"parameters": { REQUIRED KEYS REQUIRED VALUES
 "model_id": mRID as string ,
 OPTIONAL KEYS OPTIONAL VALUES
 "simulation_id": number }

The key-value pairs can be specified in any order.

[]:

topic = "goss.gridappsd.process.request.config"

message = {
 "configurationType": "CIM Dictionary",
 "parameters":{"model_id": model_mrid}
}

gapps.get_response(topic, message, timeout = 30)

The same query can be passed through the STOMP client by specifying the goss.gridappsd.process.request.config topic and the same message without the python wrapping:

[image: cim-dictionary]

Query for CIM Feeder Index

This API call returns a python dictionary of the available feeders in the Blazegraph database of power system models.

Configuration File request key-value pair:

	"configurationType": "CIM Feeder Index"

The parameters key has a set of required values as well as some optional values:

"parameters": { REQUIRED KEYS REQUIRED VALUES
 "model_id": mRID as string ,
 OPTIONAL KEYS OPTIONAL VALUES
 "simulation_id": number }

The key-value pairs can be specified in any order.

[]:

from gridappsd import topics as t
topic = t.CONFIG

message = {
 "configurationType": "CIM Feeder Index",
 "parameters":{}
}

gapps.get_response(topic, message)

The same query can be passed through the STOMP client by specifying the goss.gridappsd.process.request.config topic and the same message without the python wrapping:

[image: cim-feeder-index]

[image: GridAPPS-D-narrow.png]

Running Simulations with the Simulation API

Introduction to the Simulation API

The Simulation API is used for all actions related to a power system simulation. It is used to start, pause, restart, and stop a simulation from the command line or inside an application. It is all used to subscribe to measurements of equipment (such as line flows, loads, and DG setpoints) and the statuses of switches, capacitors, transformer taps, etc. It is also used to publish equipment control and other simulation input commands.

In the Application Components diagram (explained in detail with sample code in GridAPPS-D Application Structure), the PowerGrid Models API is used for controlling the simulation, subscribing to measurement data, and controlling equipment.

This section covers only the portion of the API used for starting, stopping, and pausing simulations. Equipment control commands are covered in Controlling Simulation with the Simulation API

[image: subscribe-to-sim]

API Syntax Overview

Application passes subscription request to GridAPPS-D Platform

The subscription request is perfromed by passing the app core algorithm function / class definition to the gapps.subscribe method. The application then passes the subscription request through the Simulation API to the topic channel for the particular simulation on the GOSS Message Bus. If the application is authorized to access simulation output, the subscription request is delivered to the Simulation Manager.

GridAPPS-D Platform delivers published simulation output to Application

Unlike the previous queries made to the various databases, the GridAPPS-D Platform does not provide any immediate response back to the application. Instead, the Simulation Manager will start delivering measurement data back to the application through the Simulation API at each subsequent timestep until the simulation ends or the application unsubscribes. The measurement data is then passed to the core algorithm class / function, where it is processed and used to run the app’s optimization /
control algorithms.

API Communication Channel

The Simulation API is used to communicate with a broad range of subscribers through both static /queue/ (the type of channel used for passing databse queries) and dynamic /topic/ communication channel names.

Extreme care is needed to use the correct communication channel. For a review of GridAPPS-D topics, see API Communication Channels

The correct communication channel for each Simulation API call will be provided in the corresponding section for each API task below.

Structure of a Simulation Message

Due to the wide range of tasks accomplished by the Simualtion API, there is no single message format that is used across all API Calls.

Each message takes the form of a python dictionary or equivalent JSON script wrapped as a python string.

The structure of each Simulation API call message will be provided in the corresponding section for each API task below.

Simulation Start Message

This section explains the API call used to start simulations. For most application developers, typical use cases would be either

	starting a digital twin simulation from within an app for “what-if” analysis

	building an automated test script that would launch a simulation with exactly identical parameters each time.

The API message structure and start command are also used by the GridAPPS-D Viz when starting a simulation using the steps in Creating a Simulation with GridAPPS-D Viz. However, the API call and detail simulation start message are hidden from the user when using Viz.

GridAPPS-D Communication Channel

This is a static /queue/ communication channel used to quest the simulation to start. The base static string used is goss.gridappsd.process.request.simulation, which can be called using the .REQUEST_SIMULATION method from the topics library.

When developing in python, it is recommended to use the .REQUEST_SIMULATION method. When using the STOMP client in GridAPPS-D VIZ, it is necessary to use the base static string.

[]:

from gridappsd import topics as t
topic = t.REQUEST_SIMULATION

Structure of a Start Message

To start a simulation from the command line or from inside an application, it is necessary to pass a message with a structure similar to that used by the Configuration File API) so that the GridAPPS-D platform can create a custom GridLab-D file from the CIM XML model stored in the Blazegraph Database.

The accepted set of key-value pairs for the Simulation API call to start a new simulation is

message = {
 "power_system_config": {
 "key1": "value1",
 "key2": "value2"},
 "simulation_config": {
 "key1": "value1",
 "key2": "value2",
 "model_creation_config": {
 "key1": "value1",
 "key2": "value2",
 "model_state": {
 "key1": "value1",
 "key2": "value2"}
 }
 },
 "simulation_output": {
 "key1": "value1",
 "key2": "value2"},
 "application_config": [{
 "key1": "value1",
 "key2": "value2"}],
 "test_config": {
 "events": [{,
 "message": {
 "forward_differences": [{
 "key1": "value1",
 "key2": "value2"}]
 "reverse_differences": [{
 "key1": "value1",
 "key2": "value2"}],
 "key1": "value1",
 "key2": "value2"}
 }]
 },
 "service_configs": {
 "key1": "value1",
 "key2": "value2"}
}

The components of the message are identical to the options in the tabs in the GridAPPS-D. Each key-value pair is explained in detail below.

Power System Configuration

The "power_system_config": key is required and specifies the CIM XML model to be imported and used for the simulation. Required key-value pairs are

"power_system_config": { REQUIRED KEY REQUIRED VALUE
 "GeographicalRegion_name": mRID as string ,
 "SubGeographicalRegion_name": mRID as string ,
 "Line_name": mRID as string }

As can be seen, the required key-value pairs are identical to those that are selected graphically using the GridAPPS-D Viz:

[image: model-config]

Simulation Configuration

The "simulation_config": key is required and specifies the runtime parameters, such as simulation duration and time step. Required key-value pairs are

"simulation_config": { REQUIRED KEY REQUIRED VALUE
 "start_time": epoch time string ,
 "duration": number (seconds) ,
 "simulator": "GridLAB-D" ,
 "timestep_frequency": number (milliseconds) ,
 "timestep_increment": number (milliseconds) ,
 "run_realtime": true OR false ,
 "simulation_name": string ,
 "power_flow_solver_method": "NR" ,
 "model_creation_config": key-value pairs }

The key "model_creation_config": is one of the optional key-value pairs that can specified. This specifies the load profile and changes to the base case used for the simulation. Key-value pairs are

"model_creation_config": { KEY VALUE
 "load_scaling_factor": number ,
 "schedule_name": string ,
 "z_fraction": number ,
 "i_fraction": number ,
 "p_fraction": number ,
 "randomize_zipload_fractions": true OR false ,
 "use_houses": true OR false ,
 "model_state": key-value pairs }

The key "model_state:" is one of the optional key-value pairs used to specify changes to switch positions and DER setpoints from the base case stored in the Blazegraph database. Key-value pairs are

"model_state": {
 "synchronousmachines":[
 {"name": "GLM/DSS name","p": number,"q": number},
 {"name": "GLM/DSS name","p": number,"q": number}],
 "switches":[
 {"name":"GLM/DSS name", "open": true},
 {"name":"GLM/DSS name", "open": false}]
 }

As can be seen, the required key-value pairs are identical to those that are selected graphically using the GridAPPS-D Viz. By default, only the required key-value pairs are listed in the viz. The simulation launched in the Viz can be configured using any of the "model_creation_config" and "model_state" key-value pairs.

[image: model-state-config]

Application Configuration

The "application_config": key is optional and specifies which applications will run during the simulation. The associated value is a list that specifies the name and application-specific configuration parameters.

"application_config": {
 "applications": [
 {
 "name": "application1",
 "config_string": "application-specific config string"
 },
 {
 "name": "application2",
 "config_string": "application-specific config string"
 }]
}

As can be seen, the required key-value pairs are identical to those that are selected graphically using the GridAPPS-D Viz. Note: simulations started using the GridAPPS-D Viz can only run one app at a time. This is due to the GUI design and not a limitation of the Simulation API.

[image: app-config]

Test Manager Configuration

The TestManager is used to create realistic operational events during the simulation run, including faults, communication outages, and other unexpected equipment actions. These types of events can be used to test robustness of applications in variable conditions similar to those of the real world.

There are three types events supported by the TestManager and the GridAPPS-D Platform:

	CIM defined fault events, used when a line is down or for taking a piece of equipment out of service.

	Communication outage events which simulates measurements or control message outages.

	Scheduled command at specific time which sends commands to a piece of equipment.

[image: event-classes]

When starting a simulation, any combination of event categories can be specified using the "test_config": key-value pair structure. This key is optional and specifies whether any pre-scripted events should be scheduled to occur during the simulation, such as faults, communication outages, and equipment malfunctions.

The TestManager configuration can be written within the text of the Simulation API call or imported from a JSON file. Each of the event categories are discussed in further detail below.

"test_config": {
 "events": [
 {
 "event_type": "CommOutage",
 "tag": "unique_tag",
 "startDateTime": "YYYY-MM-DD HH:MM:SS" OR epoch time number,
 "stopDateTime": "YYY-MM-DD HH:MM:SS" OR epoch time number,
 "allInputOutage": true or false,
 "inputList": [
 {
 "name": "equipment name",
 "type": "CIM equipment type",
 "mRID": "equipment object mRID",
 "phases": [
 {
 "phaseLabel": "A" or "B" or "C",
 "phaseIndex": number
 }
],
 "attribute": "CIM Control Attribute"
 }
],
 "allOutputOutage": true or false,
 "outputList": [
 {
 "name": "equipment name",
 "type": "CIM equipment type",
 "mRID": "equipment object mRID",
 "phases": ["A" or "B" or "C"],
 "measurementTypes": ["PNV" or "VA" or "POS"]
 }
]
 },
 {
 "event_type": "Fault",
 "tag": "unique_tag",
 "equipmentType": "CIM object type",
 "equipmentName": "equipment name",
 "mRID": [
 "equipment object mRID",
 "equipment object mRID",
 "equipment objhect mRID"
],
 "phases": [
 {
 "phaseLabel": "A" or "B" or "C",
 "phaseIndex": number
 }
],
 "faultKind": "lineToGround" or "lineToLine" or "lineToLineToGround",
 "faultImpedance": {
 "rGround": "value",
 "xGround": "value"
 },
 "startDateTime": "YYYY-MM-DD HH:MM:SS" OR epoch time number,
 "stopDateTime": "YYYY-MM-DD HH:MM:SS" OR epoch time number
 },
 {
 "message": {
 "forward_differences": [
 {
 "object": "control object mRID",
 "attribute": "CIM Class Attribute",
 "value": number
 }
],
 "reverse_differences": [
 {
 "object": "control object mRID",
 "attribute": "CIM Class Attribute",
 "value": number
 }
]
 },
 "event_type": "ScheduledCommandEvent",
 "occuredDateTime": "YYYY-MM-DD HH:MM:SS" OR epoch time number,
 "stopDateTime": "YYYY-MM-DD HH:MM:SS" OR epoch time number
 }
]
}

Fault Events

Fault Events are defined in a Test Script and define the CIM Fault events that will be intialized and cleared at scheduled times.

The phases string is all the combinations of the 3-phases plus neutral and secondary phases. Some examples are :

	“A”

	“AN” would be line to line.

	“AB” would be line to line.

	“S12N” both hot wires to ground

	“S12” both hot wires together.

PhaseConnectedFaultKind is an enumeration with the following values:

	lineToGround

	lineToLine

	lineToLineToGround

	lineOpen

The key-value pairs for specifying a fault event are:

{
 "PhaseConnectedFaultKind": string,
 "FaultImpedance": {
 "rGround": float,
 "xGround": float,
 "rLineToLine":float,
 "xLineToLine":float },
 "ObjectMRID": [string],
 "phases": string,
 "event_type": string,
 "occuredDateTime": long,
 "stopDateTime": long
}

Example 1: Fault Event Example in test script

{
 "command": "new_events",
 "events" : [{
 "PhaseConnectedFaultKind": "lineToGround",
 "FaultImpedance": {
 "rGround": 0.001,
 "xGround": 0.001 },
 "ObjectMRID": ["_9EF94B67-7279-21F4-5CEE-B2724E3C3FE6"],
 "phases": "ABC",
 "event_type": "Fault",
 "occuredDateTime": 1248130809,
 "stopDateTime": 1248130816}
]
}

As can be seen, the required key-value pairs are identical to those that are selected graphically using the GridAPPS-D Viz. The Viz offers the equivalent options to create line faults, communications outages, or upload a custom difference message JSON file.

[image: test-config]

Example 2: Commands sent from the Test Manager to the simulation

{
 "command": "update",
 "input": {
 "timestamp": 1553201000414,
 "reverse_differences": [],
 "difference_mrid": "_ee4e4055-222f-4ccf-bed1-93063bd4392c",
 "forward_differences": [
 {
 "ObjectMRID": "12344",
 "FaultImpedance": {
 "xLineToLine": 0.0,
 "rGround": 0.001,
 "rLineToLine": 0.0,
 "xGround": 0.001
 },
 "FaultMRID": "1233",
 "PhaseCode": "AN",
 "PhaseConnectedFaultKind": "lineToGround"
 }
]
 }
}

Example 3: Clear a Fault Command example

{
 "command": "update",
 "input": {
 "timestamp": 1553201003561,
 "reverse_differences": [{
 "ObjectMRID": "12344",
 "FaultImpedance": {
 "xLineToLine": 0.0,
 "rGround": 0.001,
 "rLineToLine": 0.0,
 "xGround": 0.001
 },
 "FaultMRID": "1233",
 "PhaseCode": "AN",
 "PhaseConnectedFaultKind": "lineToGround"
 }
],
 "difference_mrid": "_00b4668d-8454-4f1c-aed9-42d1424af149",
 "forward_differences": []
 }
}

Communication Outage Events

Communication Outage events are separate from the CIM events but have occuredDateTime and stopDateTime.

	The inputOutageList is the list of objectMRID and attribute pair. The objectMRID is anything that can be controllable and specific control attribute i.e. “RegulatingControl.mode”.

	The outputOutageList is the list of MRIDs for the measurement device that is associated to the .

	If allInputOutage is True the inputOutageList is not needed as all inputs to the simulator are blocked.

	If allOutputOutage is True the outputOutageList is not needed as all outputs from the simulator are blocked.

The key-value pairs for communication outage events follow the format

{
 "allOutputOutage": boolean,
 "allInputOutage": boolean,
 "inputOutageList": [{"objectMRID":string, "attribute":string}],
 "outputOutageList": [string],
 "event_type": string,
 "occuredDateTime": long,
 "stopDateTime": long
}

Example 1: JSON Communication Outage command for the TestManager

{
 "command": "new_events",
 "events": [{
 "allOutputOutage": false,
 "allInputOutage": false,
 "inputOutageList": [{
 "objectMRID":"_EF2FF8C1-A6A6-4771-ADDD-A371AD929D5B",
 "attribute":"ShuntCompensator.sections" },
 {"objectMRID":"_C0F73227-012B-B70B-0142-55C7C991A343",
 "attribute":"ShuntCompensator.sections"}],
 "outputOutageList": ["_5405BE1A-BC86-5452-CBF2-BD1BA8984093"],
 "event_type": "CommOutage",
 "occuredDateTime": 1248130819,
 "stopDateTime": 1248130824
 }
]
}

As can be seen, the required key-value pairs are identical to those that are selected graphically using the GridAPPS-D Viz. The Viz offers the equivalent options to create line faults, communications outages, or upload a custom difference message JSON file.

[image: test-config]

Example 2: Communication Event to the Simulation Bridge

{
 "command": "CommOutage",
 "input": {
 "timestamp": 1248130819,
 "forward_differences": [
 {
 "allOutputOutage": false,
 "allInputOutage": false,
 "inputOutageList": [
 {
 "objectMRID": "_EF2FF8C1-A6A6-4771-ADDD-A371AD929D5B",
 "attribute": "ShuntCompensator.sections"
 },
 {
 "objectMRID": "_C0F73227-012B-B70B-0142-55C7C991A343",
 "attribute": "ShuntCompensator.sections"
 }
],
 "outputOutageList": [
 "_5405BE1A-BC86-5452-CBF2-BD1BA8984093"
],
 "faultMRID": "_ce5ee4c9-9c41-4f5e-8c5c-f19990f9cfba",
 "event_type": "CommOutage",
 "occuredDateTime": 1248130819,
 "stopDateTime": 1248130824
 }
],
 "reverse_differences": []
 }
}

Scheduled Command Events

Schedule Commands are events that can be scheduled for a specific point in time of the simulation. This can be used to trigger a fault like behavior, such as changing the taps of a regular or mimicking behavior of protective devices.

Faults in topologically meshed networks need to created using a Scheduled Command event to open all switches that would be tripped by protective relaying due to a known bug in the GridLAB-D logical fault processor.

The set of key-value pairs for Scheduled Command events follow the format below. The message parameters follow the format of a difference message, which is explained in detail in Format of Difference Messages.

{
 "command": "new_events",
 "events":[{
 "message":{
 "forward_differences": [{
 "object": "control object mRID",
 "attribute": "CIM Class Attribute",
 "value": number }],
 "reverse_differences": [{
 "object": "control object mRID",
 "attribute": "CIM Class Attribute",
 "value": number }]
 },
 },
 "occuredDateTime":long,
 "stopDateTime":long,
 }
]
}

Service Configuration

The "service_configs": key is used to start a GridAPPS-D service, such as the Sensor Service, State Estimator, or DNP3 Service. The key-value pairs for starting the service depend on the particular service and will be covered in the documentation for each GridAPPS-D Service. Note that the syntax of this key is a plural noun, unlike the other config keys.

	DNP3 Service [https://gridappsd-training.readthedocs.io/en/develop/services/dnp3/source/index.html]

	Sensor Simulator Service [https://gridappsd-training.readthedocs.io/en/develop/services/sensor-simulator/source/index.html]

	State Estimator Service [https://gridappsd-training.readthedocs.io/en/develop/services/state-estimator/README.html]

Complete Simulation Start Message

The complete simulation message that is passed to the Simulation API is a Python dictionary / JSON string that specified the "power_system_conf":, "application_config":, "simulation_config":, "test_config":, and "service_configs": key-value pairs.

A sample simulation start message for the IEEE 123 bus system running the Sensor Simulator service and including one Scheduled Command event is shown below.

[]:

 run_config_123 = {
 "power_system_config": {
 "GeographicalRegion_name": "_73C512BD-7249-4F50-50DA-D93849B89C43",
 "SubGeographicalRegion_name": "_1CD7D2EE-3C91-3248-5662-A43EFEFAC224",
 "Line_name": "_C1C3E687-6FFD-C753-582B-632A27E28507"
 },
 "application_config": {
 "applications": []
 },
 "simulation_config": {
 "start_time": "1570041113",
 "duration": "120",
 "simulator": "GridLAB-D",
 "timestep_frequency": "1000",
 "timestep_increment": "1000",
 "run_realtime": True,
 "simulation_name": "ieee123",
 "power_flow_solver_method": "NR",
 "model_creation_config": {
 "load_scaling_factor": "1",
 "schedule_name": "ieeezipload",
 "z_fraction": "0",
 "i_fraction": "1",
 "p_fraction": "0",
 "randomize_zipload_fractions": False,
 "use_houses": False
 }
 },
 "test_config": {
 "events": [{
 "message": {
 "forward_differences": [
 {
 "object": "_6C1FDA90-1F4E-4716-BC90-1CCB59A6D5A9",
 "attribute": "Switch.open",
 "value": 1
 }
],
 "reverse_differences": [
 {
 "object": "_6C1FDA90-1F4E-4716-BC90-1CCB59A6D5A9",
 "attribute": "Switch.open",
 "value": 0
 }
]
 },
 "event_type": "ScheduledCommandEvent",
 "occuredDateTime": 1570041140,
 "stopDateTime": 1570041200
 }]
 },
 "service_configs": [{
 "id": "gridappsd-sensor-simulator",
 "user_options": {
 "sensors-config": {
 "_99db0dc7-ccda-4ed5-a772-a7db362e9818": {
 "nominal-value": 100,
 "perunit-confidence-band": 0.02,
 "aggregation-interval": 5,
 "perunit-drop-rate": 0.01
 },
 "_ee65ee31-a900-4f98-bf57-e752be924c4d": {},
 "_f2673c22-654b-452a-8297-45dae11b1e14": {}
 },
 "random-seed": 0,
 "default-aggregation-interval": 30,
 "passthrough-if-not-specified": False,
 "default-perunit-confidence-band": 0.01,
 "default-perunit-drop-rate": 0.05
 }
 }]
}

The simulation start message can be built from within the application or copied from the GridAPPS-D Viz by starting a new simulation and copying the start message from the log file. Pausing the simulation immediately after it starts is extremely helpful in locating the start message and copying it.

[image: sim-start-message]

Starting the Simulation

To start the simulation, import the gridappsd.simulation library, which provides multiple shortcut functions for running and controlling a simulation.

The simulation start message python dictionary created in the previous section is then passed as an argument to Simulation object.

The .start_simulation() method is then used to pass the Simulation API call to the GOSS Message Bus and the GridAPPS-D Platform.

The simulation id can be obtained by invoking the .simulation_id method.

[]:

from gridappsd.simulation import Simulation # Import Simulation Library

simulation_obj = Simulation(gapps, run_config_123) # Create Simulation object
simulation_obj.start_simulation() # Start Simulation

simulation_id = simulation_obj.simulation_id # Obtain Simulation ID
print("Successfully started simulation with simulation_id: ", simulation_id)

The simulation start message can also be saved as a JSON file that is loaded using the json.load("filename.json") method. The simulation is then started by passing the start message to the .start_simulation() method.

[]:

import json
from gridappsd.simulation import Simulation # Import Simulation Library

run123_config = json.load(open("Run123NodeFileSimAPI.json")) # Pull simulation start message from saved file

simulation_obj = Simulation(gapps, run123_config) # Create Simulation object
simulation_obj.start_simulation() # Start Simulation

simulation_id = simulation_obj.simulation_id # Obtain Simulation ID
print("Successfully started simulation with simulation_id: ", simulation_id)

Pausing, Resuming, or Stopping a Simulation

Whether running a simulation through the GridAPPS-D Viz or a parallel digital twin simulation started from within your application, it is frequently useful to be able to pause, resume, or stop the simulation.

Using the gridappsd.simulation Python Library

For simulations that are started using the .start_simulation() method of the gridappsd.simulation python library, it is possible to use the associated methods to pause, resume, and stop simulations.

The library provides the following methods:

	.pause() – Pause the simulation

	.resume() – Resume the simulation

	.resume_pause_at(pause_time) – Resume the simulation, and then pause it in so many seconds

	.stop() – Stop the simulation

	.run_loop() – Loop the entire simulation until interrupted

Using a Topic + Message API Call

If the simulation was started using the GridAPPS-D Viz, then pause, resume, and stop commands need to be issued using an API call to the Simulation API specifying the topic and message.

Specifying the Topic

This is a dynamic /topic/ communication channel that is best implemented by importing the GriAPPSD-Python library function for generating the correct topic.

[]:

viz_simulation_id = "paste sim_id here"

[]:

from gridappsd.topics import simulation_input_topic
topic = simulation_input_topic(viz_simulation_id)

Pause Message

The simulation can be paused using a very simple pause message. Since no response is expected from the Simulation API, we used the .send(topic, message) method for the GridAPPS-D connection object.

[]:

message = {"command": "pause"}
gapps.send(topic, message)

Resume Message

The simulation can be resumed using a very simple message. Since no response is expected from the Simulation API, we used the .send(topic, message) method for the GridAPPS-D connection object.

[]:

message = {"command": "resume"}
gapps.send(topic, message)

Resume then Pause Message

The simulation can be resumed and then paused using a very simple message. Since no response is expected from the Simulation API, we used the .send(topic, message) method for the GridAPPS-D connection object.

[]:

message = {
 "command": "resumePauseAt",
 "input": {"pauseIn": 10}
}
gapps.send(topic, message)

[image: GridAPPS-D-narrow.png]

Publishing and Subscribing with the Simulation API

Introduction to the Simulation API

The Simulation API is used for all actions related to a power system simulation. It is used to start, pause, restart, and stop a simulation from the command line or inside an application. It is all used to subscribe to measurements of equipment (such as line flows, loads, and DG setpoints) and the statuses of switches, capacitors, transformer taps, etc. It is also used to publish equipment control and other simulation input commands.

In the Application Components diagram (explained in detail with sample code in GridAPPS-D Application Structure), the PowerGrid Models API is used for controlling the simulation, subscribing to measurement data, and controlling equipment.

This section covers only the portion of the API used for subscribing to measurements and publishing equipment control commands. Usage of the API for starting, stopping, and pausing simulations is covered in Creating and Running Simulations with Simulation API

Processing Measurements & App Core Algorithm

The central portion of a GridAPPS-D application is the measurement processing and core algorithm section. This section is built as either a class or function definition with prescribed arguments. Each has its advantages and disadvantages:

	The function-based approach is simpler and easier to implement. However, any parameters obtained from other APIs or methods to be used inside the function currently need to be defined as global variables.

	The class-based approach is more complex, but also more powerful. It provides greater flexibility in creating additional methods, arguments, etc.

App Core Information Flow

This portion of the application does not communicate directly with the GridAPPS-D platform.

Instead, the next part of the GridAPPS-D application (Subscribing to Simulation Output) delivers the simulated SCADA measurement data to the core algorithm function / class definition. The core algorithm processes the data to extract the desired measurements and run its optimization / control agorithm.

Structure of Simulation Output Message

The first part of the application core is parsing simulated SCADA and measurement data that is delivered to the application.

The general format of the messages received by the Simulation API is a python dictionary with the following key-value pairs:

{
 "simulation_id" : string,
 "message" : {
 "timestamp" : epoch time number,
 "measurements" : {
 "meas mrid 1":{
 "PNV measurement_mrid": "meas mrid 1"
 "magnitude": number,
 "angle": number },
 "meas mrid 2":{
 "VA measurement_mrid": "meas mrid 2"
 "magnitude": number,
 "angle": number },
 "meas mrid 3":{
 "Pos measurement_mrid": "meas mrid 3"
 "value": number },
 .
 .
 .
 "meas mrid n":{
 "measurement_mrid": "meas mrid n"
 "magnitude": number,
 "angle": number },
 }
}

Format of Measurement Values

In the message above, note the difference in the key-value pair structure of different types of measurements:

PNV Voltage Measurements

These are specified as magnitude and angle key-value pairs.

	Magnitude is the RMS phase-to-neutral voltage.

	Angle is phase angle of the voltage at the particular node.

VA Volt-Ampere Apparent Power Measurements

These are specified as magnitude and angle key-value pairs. * Magnitude is the apparent power. * Angle is complex power triangle angle (i.e. acos(power factor))

Pos Position Measurements

These are specified as a value key-value pair. * Value is the position of the particular measurement * For switch objects: value = 1 means “closed”, value = 0 means “open” * For capacitor objects, values are reversed: value = 1 means “on”, value = 0 means “off” * For regulator objects, value is the tap position, ranging from -16 to 16

Role of Measurement mRIDs

The simulation output message shown above typically contains the measurement mRIDs for all available sensors for all equipment in the power system model. The application needs to filter the simulation output message to just the set of measurements relevant to the particular application (e.g. switch positions for a FLISR app or regulator taps for a VVO app).

The equipment and measurement mRIDs are obtained in the first two sections of the application. See Query for Power System Model and Query for Measurement mRIDs for examples of how these code sections fit in a sample app.

API syntax details for the query messages to PowerGrid Models API to obtain equipment info and measurement mRIDs are given in Query for Object Dictionary and Query for Measurements.

These mRIDs will be needed to parse the simulation output message and filter it to just the desired set of measurements.

For the example below, we will be interested in only the measurement associated with switches, so we will use the PowerGrid Models API to query for the set of measurements associated with the CIM Class LoadBreakSwitch. We then will filter those values to just the mRIDs associated with each type of measurement.

[]:

from gridappsd import topics as t

Create query message to obtain measurement mRIDs for all switches
message = {
 "modelId": model_mrid,
 "requestType": "QUERY_OBJECT_MEASUREMENTS",
 "resultFormat": "JSON",
 "objectType": "LoadBreakSwitch"
}

Pass query message to PowerGrid Models API
response_obj = gapps.get_response(t.REQUEST_POWERGRID_DATA, message)
measurements_obj = response_obj["data"]

Switch position measurements (Pos)
Pos_obj = [k for k in measurements_obj if k['type'] == 'Pos']

Switch phase-neutral-voltage measurements (PNV)
PNV_obj = [k for k in measurements_obj if k['type'] == 'PNV']

Switch volt-ampere apparent power measurements (VA)
VA_obj = [k for k in measurements_obj if k['type'] == 'VA']

Switch current measurements (A)
A_obj = [k for k in measurements_obj if k['type'] == 'A']

App Core as a Function Definition

The first approach used to build the application core is to define a function with the correct set of arguments that is then passed to the .subscribe() method associated with the GridAPPPSD() object.

The function does not require a specific name, and is somewhat easier to define and use. However, the arguments of the function need to be named correctly for the GridAPPSD-Python library to process the simulation output correctly.

The format for the function definition is

def mySubscribeFunction(header, message):
 # do something when receive a message
 # parse to get measurments
 # do some calculations
 # publish some equipment commands
 # display some results

That function handle is then passed as an argument to the .subscribe(topic, function_handle) method when subscribing to the simulation in the next section.

Note that the subscription function definition does not allow any additional parameters to be passed. The only allowed arguments are header and message.

Any other parameters, such as measurement mRIDs will need to be defined as global variables.

[]:

Define global python dictionary of position measurements
global Pos_obj
Pos_obj = [k for k in measurements_obj if k['type'] == 'Pos']

Define global python dictionary of phase-neutral-voltage measurements (PNV)
global PNV_obj
PNV_obj = [k for k in measurements_obj if k['type'] == 'PNV']

Define global python dictionary of volt-ampere apparent power measurements (VA)
VA_obj = [k for k in measurements_obj if k['type'] == 'VA']

Current measurements (A)
A_obj = [k for k in measurements_obj if k['type'] == 'A']

Below is the sample code for the core section of a basic application that tracks the number of open switches and the number of switches that are outaged.

[]:

Only allowed arguments are `header` and `message`
message is simulation output message in format above
def DemoAppCoreFunction(header, message):

 # Extract time and measurement values from message
 timestamp = message["message"]["timestamp"]
 meas_value = message["message"]["measurements"]

 # Obtain list of all mRIDs from message
 meas_mrid = list(meas_value.keys())

 # Example 1: Count the number of open switches
 open_switches = []
 for index in Pos_obj:
 if index["measid"] in meas_value:
 mrid = index["measid"]
 power = meas_value[mrid]
 if power["value"] == 0: # Filter to measurements with value of zero
 open_switches.append(index["eqname"])

 # Print message to command line
 print("............")
 print("Number of open switches at time", timestamp, ' is ', len(set(open_switches)))

 # Example 2: Count the number of outaged switches (voltage = 0)
 dead_switches = []
 for index in PNV_obj:
 if index["measid"] in meas_value:
 mrid = index["measid"]
 voltage = meas_value[mrid]
 if voltage["magnitude"] == 0.0:
 dead_switches.append(index["eqname"])

 # Print message to command line
 print("............")
 print("Number of outaged switches at time", timestamp, ' is ', len(set(dead_switches)))

App Core as a Class Definition

The second approach used to build the app core and process measurements is to define a class containing two methods named __init__ and on_message.

These methods specify 1) how your app would initialize variables and attributes at the start of the simulation and 2) how your app behaves when it receives various messages.

IMPORTANT! The GridAPPS-D Platform uses the exact names and syntax for the methods:

	__init__(self, simulation_id, gapps_object, optional_objects) – This method requires the simulation_id and the GridAPPS-D connection object. It is also possible to add other user-defined arguments, such as measurement mRIDs or other information required by your application.

	on_message(self, headers, message) – This method allows the class to subscribe to simulation measurements. It also contains the core behavior of your application and how it responds to each type of message.

It is also possible to use the same class definition to subscribe to other topics, such as Simulation Logs. This is done by creating additional user-defined methods and then passing those methods to the .subcribe() method associated with the GridAPPS-D connection object. An example of how this is done is provided for subcribing to simulation logs in Logging with a Class Method.

class YourSimulationClassName(object):
 # Your documentation text here on what app does

 def __init__(self, simulation_id, gapps_obj, meas_obj, your_obj):
 # Instantiate class with specific initial state

 # Attributes required by Simulation API
 self._gapps = gapps_obj
 self._simulation_id = simulation_id

 # Attributes to publish difference measurements
 self.diff = DifferenceBuilder(simulation_id)

 # Custom attributes for measurements, custom info
 self.meas_mrid = meas_obj
 self.your_attribute1 = your_obj["key1"]
 self.your_attribute2 = your_obj["key2"]

 def on_message(self, headers, message):
 # What app should do when it receives a subscription message

 variable1 = message["message"]["key1"]
 variable2 = message["message"]["key2"]

 # Insert your custom app behavior here
 if variable1 == foo:
 bar = my_optimization_result

 # Insert your custom equipment commands here
 if variable2 == bar:
 self.diff.add_difference(object_mrid, control_attribute, new_value, old_value)

 def my_custom_method_1(self, headers, message):
 # Use extra methods to subscribe to other topics, such as simulation logs
 variable1 = message["key1"]
 variable2 = message["key2"]

 def my_custom_method_2(self, param1, param2):
 # Use extra methods as desired
 variable1 = foo
 variable2 = bar

Below is the sample code for the core section of a basic application that tracks the number of open switches and the number of switches that are outaged.

[]:

Application core built as a class definition
class DemoAppCoreClass(object):

 # Subscription callback from GridAPPSD object
 def __init__(self, simulation_id, gapps_obj, meas_obj):
 self._gapps = gapps_obj # GridAPPS-D connection object
 self._simulation_id = simulation_id # Simulation ID
 self.meas_mrid = meas_obj # Dictionary of measurement mRIDs obtained earlier

 def on_message(self, headers, message):

 # Extract time and measurement values from message
 timestamp = message["message"]["timestamp"]
 meas_value = message["message"]["measurements"]

 # Filter measurement mRIDs for position and voltage sensors
 Pos_obj = [k for k in self.meas_mrid if k['type'] == 'Pos']
 PNV_obj = [k for k in self.meas_mrid if k['type'] == 'PNV']

 # Example 1: Count the number of open switches
 open_switches = []
 for index in Pos_obj:
 if index["measid"] in meas_value:
 mrid = index["measid"]
 power = meas_value[mrid]
 if power["value"] == 0: # Filter to measurements with value of zero
 open_switches.append(index["eqname"])

 # Print message to command line
 print("............")
 print("Number of open switches at time", timestamp, ' is ', len(set(open_switches)))

 # Example 2: Count the number of outaged switches (voltage = 0)
 dead_switches = []
 for index in PNV_obj:
 if index["measid"] in meas_value:
 mrid = index["measid"]
 voltage = meas_value[mrid]
 if voltage["magnitude"] == 0.0:
 dead_switches.append(index["eqname"])

 # Print message to command line
 print("............")
 print("Number of outaged switches at time", timestamp, ' is ', len(set(dead_switches)))

Subscribing to Simulation Output

Simulation Subscription Information Flow

The figure below shows the information flow involved in subscribing to the simulation output.

The subscription request is sent using gapps.subscribe(topic, class/function object) on the specific Simulation topic channel (explained in API Communication Channels). No immediate response is expected back from the platform. However, after the next simulation timestep, the Platform will continue to deliver a complete set of measurements back to the application for each timestep until the end of the simulation.

[image: subscribe-to-sim]

Application passes subscription request to GridAPPS-D Platform

The subscription request is performed by passing the app core algorithm function / class definition to the gapps.subscribe method. The application then passes the subscription request through the Simulation API to the topic channel for the particular simulation on the GOSS Message Bus. If the application is authorized to access simulation output, the subscription request is delivered to the Simulation Manager.

GridAPPS-D Platform delivers published simulation output to Application

Unlike the previous queries made to the various databases, the GridAPPS-D Platform does not provide any immediate response back to the application. Instead, the Simulation Manager will start delivering measurement data back to the application through the Simulation API at each subsequent timestep until the simulation ends or the application unsubscribes. The measurement data is then passed to the core algorithm class / function, where it is processed and used to run the app’s optimization /
control algorithms.

Subscription API Communication Channel

This is a dynamic /topic/ communication channel that is best implemented by importing the GriAPPSD-Python library function for generating the correct topic. This communication channel is used for all simulation subscription API calls.

[]:

from gridappsd.topics import simulation_output_topic

output_topic = simulation_output_topic(viz_simulation_id)

Comparison of Subscription Approaches

Each approach has its advantages and disadvantages.

	The function-based approach is simpler and easier to implement. However, any parameters obtained from other APIs or methods to be used inside the function currently need to be defined as global variables.

	The class-based approach is more complex, but also more powerful. It provides greater flexibility in creating additional methods, arguments, etc.

	The Simulation Library-based approach is easiest, but only works currently for parallel digital twin simulations started using the simulation_obj.start_simulation() method.

The choice of which approach is used depends on the personal preferences of the application developer.

Subscription for Function-based App Core

If the application core was created as a function definition as shown in App Core as Function Definition, then the function name is passed to the .subscribe(output_topic, core_function) method of the GridAPPS-D Connection object.

[]:

conn_id = gapps.subscribe(output_topic, DemoAppCoreFunction)

Subscription for Class-Based App Core

If the application core was created as a class definition as shown in App Core as Class Definition, then the function name is passed to the .subscribe(output_topic, object) method of the GridAPPS-D connection object.

After defining the class for the application core as shown above, we create another object that will be passed to the subscription method. The required parameters for this object are the same as those defined for the __init__() method of the app core class, typically the Simulation ID, GridAPPS-D connection object, dictionary of measurements needed by the app core, and any user-defined objects.

class_obj = AppCoreClass(simulation_id, gapps_obj, meas_obj, your_obj)

[]:

demo_obj = DemoAppCoreClass(viz_simulation_id, gapps, measurements_obj)

conn_id = gapps.subscribe(output_topic, demo_obj)

If we wish to subscribe to an additional topic (such as the Simulation Logs, a side communication channel between two different applications, or a communication with a particular service), we can define an additional method in the class (such as my_custom_method_1 in the example class definition above) and then pass it to to the .subscribe(topic, object.method) method associated with the GridAPPS-D connection object:

gapps.subscribe(other_topic, demo_obj.my_custom_method_1)

Subscribing to Parallel Simulations

Parallel simulations started using the Simulation API (as shown in Starting a Simulation) and the Simulation library in GridAPPSD-Python do not need to use the gapps.subscribe method.

Instead, the GridAPPSD-Python library contains several shortcut functions that can be used. These methods currently cannot interact with a simulation started from the Viz. This functionality will be added in a future release.

The code block below shows how a parallel simulation can be started using a simulation start message stored in a JSON file. The simulation is started using the .start_simulation() method.

[]:

import json, os
from gridappsd import GridAPPSD
from gridappsd.simulation import Simulation

Connect to GridAPPS-D Platform
os.environ['GRIDAPPSD_USER'] = 'tutorial_user'
os.environ['GRIDAPPSD_PASSWORD'] = '12345!'
gapps = GridAPPSD()
assert gapps.connected

model_mrid = "_C1C3E687-6FFD-C753-582B-632A27E28507"
run123_config = json.load(open("Run123NodeFileSimAPI.json")) # Pull simulation config from saved file
simulation_obj = Simulation(gapps, run123_config) # Create Simulation object
simulation_obj.start_simulation() # Start Simulation

print("Successfully started simulation with simulation_id: ", simulation_obj.simulation_id)

[]:

simulation_id = simulation_obj.simulation_id

The Simulation library provides four methods that can be used to define how the platform interacts with the simulation:

	.add_ontimestep_callback(myfunction1) – Run the desired function on each timestep

	.add_onmeasurement_callback(myfunction2) – Run the desired function when a measurement is received.

	.add_oncomplete_callback(myfunction3) – Run the desired function when simulation is finished

	.add_onstart_callback(myfunction4) – Run desired function when simulation is started

Note that the measurement callback method returns just the measurements and timestamps without any of the message formatting used in the messages received by using the gapps.subscribe(output_topic, object) approach.

The python dictionary returned by the GridAPPS-D Simulation output to the .add_onmeasurement_callback() method is always named measurements and uses the following key-value pairs format:

{
 '_pnv_meas_mrid_1': {'angle': number,
 'magnitude': number,
 'measurement_mrid': '_pnv_meas_mrid_1'},
 '_va_meas_mrid_2': { 'angle': number,
 'magnitude': number,
 'measurement_mrid': '_va_meas_mrid_2'},
 '_pos_meas_mrid_3': {'measurement_mrid': '_pos_meas_mrid_3',
 'value': 1},
 .
 .
 .
 '_pnv_meas_mrid_n': {'angle': number,
 'magnitude': number,
 'measurement_mrid': '_pnv_meas_mrid_1'}
}

To use use these methods, we define a set of functions that determine the behavior of the application for each of the four types of callbacks listed above. These functions are similar to those defined for the function-based app core algorithm.

def my_onstart_func(sim):
 # Do something when the simulation starts
 # Do something else when the sim starts

simulation_obj.add_onstart_callback(my_onstart_func)

def my_onmeas_func(sim, timestamp, measurements):
 # Do something when app receives a measurement
 # Insert your custom app behavior here
 if measurements[object_mrid] == foo:
 bar = my_optimization_result

simulation_obj.add_onmeasurement_callback(my_onmeas_func)

def my_oncomplete_func(sim):
 # Do something when simulation is complete
 # example: delete all variables, close files

simulation_obj.add_oncomplete_callback(my_oncomplete_func)

The code block below shows how the same app core algorithm can be used for a parallel simulation using the .add_onmeasurement_callback() method:

[]:

def demo_onmeas_func(sim, timestamp, measurements):

 open_switches = []
 for index in Pos_obj:
 if index["measid"] in measurements:
 mrid = index["measid"]
 power = measurements[mrid]
 if power["value"] == 0:
 open_switches.append(index["eqname"])
 mrid_open_switches.append(index["measid"])

 print("............")
 print("Number of open switches at time", timestamp, ' is ', len(set(open_switches)))

[]:

simulation_obj.add_onmeasurement_callback(demo_onmeas_func)

Publishing Commands to Simulation Input

The next portion of a GridAPPS-D App is publishing equipment control commands based on the optimization results or objectives of the app algorithm.

Depending on the preference of the developer, this portion can be a separate function definition, or included as part of the main class definition as part of the App Core as a Class Definition described earlier.

Equipment Command Information Flow

The figure below outlines information flow involved in publishing equipment commands to the simulation input.

Unlike the various queries to the databases in the app sections earlier, equipment control commands are passed to the GridAPPS-D API using the gapps.send(topic, message) method. No response is expected from the GridAPPS-D platform.

If the application desires to verify that the equipment control command was received and implemented, it needs to do so by 1) checking for changes in the associated measurements at the next timestep and/or 2) querying the Timeseries Database for historical simulation data associated with the equipment control command.

[image: publish-commands]

Application sends difference message to GridAPPS-D Platform

First, the application creates a difference message containing the current and desired future control point / state of the particular piece of power system equipment to be controlled. The difference message is a JSON string or equivalant Python dictionary object. The syntax of a difference message is explained in detail below in Format of Difference Message.

The application then passes the query through the Simulation API to the GridAPPS-D Platform, which publishes it on the topic channel for the particular simulation on the GOSS Message Bus. If the app is authenticated and authorized to control equipment, the difference message is delivered to the Simulation Manager. The Simulation Manager then passes the command to the simulation through the Co-Simulation Bridge (either FNCS or HELICS).

No response from GridAPPS-D Platform back to Application

The GridAPPS-D Platform does not provide any response back to the application after processing the difference message and implementing the new equipment control setpoint.

Simulation Input API Channel

This is a dynamic /topic/ communication channel that is best implemented by importing the GriAPPSD-Python library function for generating the correct topic.

	from gridappsd.topics import simulation_input_topic

	input_topic = simulation_input_topic(simulation_id)

[]:

from gridappsd.topics import simulation_input_topic

input_topic = simulation_input_topic("viz_simulation_id")

Equipment Control mRIDs

The mRIDs for controlling equipment are generally the same as those obtained using the QUERY_OBJECT_DICT key with the PowerGrid Models API, which was covered in Query for Object Dicionary.

However, the control attributes for each class of equipment in CIM use a different naming convention than those for the object types. Below is a list of "objectType" used to query for mRIDs using PowerGrid Models API and the associated control "attribute" used in a difference message with Simulation API for each category of power system equipment that are currently supported by the HELICS-GOSS Bridge.

	Switches

	CIM Class Key: "objectType": "LoadBreakSwitch"

	Control Attribute: "attribute": "Switch.open"

	Values: 1 is open, 0 is closed

	Capacitor Banks:

	CIM Class Key: "objectType": "LinearShuntCompensator"

	Control Attribute: "attribute": "ShuntCompensator.sections"

	Values: 0 is off/open, 1 is on/closed

	Control Attribute: "attribute": "RegulatingControl.enabled"

	Values: false is manual control, true is auto control by GridLab-D

	Control Attribute: "attribute": "RegulatingControl.mode"

	Values: 0 is voltage, 1 is manual, 2 is reactive power, 3 is current

	Control Attribute: "attribute": "RegulatingControl.targetDeadband"

	Values: number (float) for control deadband

	Control Attribute: "attribute": "RegulatingControl.targetValue"

	Values: number (float) for control target value

	Control Attribute: "attribute": "ShuntCompensator.aVRDelay"

	Values: number (float) for control delay in seconds

	Inverter-based DERs:

	CIM Class Key: "objectType": "PowerElectronicsConnection"

	Control Attribute: "attribute": "PowerElectronicsConnection.p"

	Values: number (float) in Watts (not kW)

	Control Attribute: "attribute": "PowerElectronicsConnection.q"

	Values: number (float) in VArs (not kVAr)

	Synchronous Rotating (diesel/LNG) DGs:

	CIM Class Key: "objectType": "SynchronousMachine"

	Control Attribute: "attribute": "RotatingMachine.p"

	Values: number (float) in Watts (not kW)

	Control Attribute: "attribute": "RotatingMachine.q"

	Values: number (float) in VArs (not kVAr)

	Regulating Transformer Tap:

	CIM Class Key: "objectType": "RatioTapChanger"

	Control Attribute: "attribute": "TapChanger.step"

	Values: integer value for tap step from -16 to 16

	Control Attribute: "attribute": "TapChanger.initialDelay"

	Values: number (float) for time delay to change tap

	Control Attribute: "attribute": "TapChanger.lineDropCompensation"

	Values: 0 is manual, 1 is automatic

	Control Attribute: "attribute": "TapChanger.LineDropR"

	Values: number (float) for line resistance

	Control Attribute: "attribute": "TapChanger.LineDropX"

	Values: number (float) for line reactance

	Energy Consumer:

	CIM Class Key: "objectType": "EnergyConsumer"

	Control Attribute: "attribute": "EnergyConsumer.p"

	Values: number (float) for base power of load

The query for RatioTapChanger is not supported in the PowerGrid Models API at the current time. A custom SPARQL query needs to be done using the sample query in `CIMHub Sample Queries <https://github.com/GRIDAPPSD/CIMHub/blob/master/queries.txt>`__

The example below shows a query to obtain the correct mRID for switch SW2 in the IEEE 123 node model:

[]:

from gridappsd import topics as t

message = {
 "modelId": model_mrid,
 "requestType": "QUERY_OBJECT_DICT",
 "resultFormat": "JSON",
 "objectType": "LoadBreakSwitch"
}

response_obj = gapps.get_response(t.REQUEST_POWERGRID_DATA, message)
switch_dict = response_obj["data"]

Filter to get mRID for switch SW2:
for index in switch_dict:
 if index["IdentifiedObject.name"] == 'sw3':
 sw_mrid = index["IdentifiedObject.mRID"]

Format of a Difference Message

The general format for a difference message is a python dictionary or equivalent JSON string that specifies the reverse difference and the forward difference, in compliance with the CIM standard:

The reverse difference is the current status / value associated with the control attribute. It is a formatted as a list of dictionary constructs, with each dictionary specifying the equipment mRID associated with the CIM class keys above, the control attribute, and the current value of that control attribute. The list can contain reverse differences for multiple pieces of equipment.

The forward difference is the desired new status / value associated with the control attribute. It is a formatted as a list of dictionary constructs, with each dictionary specifying the equipment mRID associated with the CIM class keys above, the control attribute, and the current value of that control attribute. The list can contain foward differences for multiple pieces of equipment.

message = {
 "command": "update",
 "input": {
 "simulation_id": "simulation id as string",
 "message": {
 "timestamp": epoch time number,
 "difference_mrid": "optional unique mRID for command logs",
 "reverse_differences": [{

 "object": "first equipment mRID",
 "attribute": "control attribute",
 "value": current value
 },
 {

 "object": "second equipment mRID",
 "attribute": "control attribute",
 "value": current value
 }
],
 "forward_differences": [{

 "object": "first equipment mRID",
 "attribute": "control attribute",
 "value": new value
 },
 {

 "object": "second equipment mRID",
 "attribute": "control attribute",
 "value": new value
 }
]
 }
 }
}

Note: The GridAPPS-D platform does not validate whether "reverse_differences": has the correct equipment control values for the current time. It is used just for compliance with the CIM standard.

Using GridAPPSD-Python DifferenceBuilder

The DifferenceBuilder class is a GridAPPSD-Python tool that can be used to automatically build the difference message with correct formatting.

First, import DifferenceBuilder from the GridAPPSD-Python Library and create an object that will be used to create the desired difference messages.

[]:

from gridappsd import DifferenceBuilder

my_diff_build = DifferenceBuilder("viz_simulation_id")

We then use two methods associated with the DifferenceBuilder object:

	.add_difference(self, object_mrid, control_attribute, new_value, old_value) – Generates a correctly formatted difference message.

	.get_message() – Saves the message as a python dictionary that can be published using gapps.send(topic, message)

[]:

my_diff_build.add_difference(sw_mrid, "Switch.open", 1, 0) # Open switch given by sw_mrid

message = my_diff_build.get_message()

The difference message is then published to the GOSS Message Bus and the Simulation API using the .send() method associated with the GridAPPS-D connection object.

[]:

gapps.send(input_topic, message)

Unsubscribing from a Simulation

To unsubscribe from a simulation, pass the connection ID to .unsubscribe(conn_id) method of the GridAPPS-D connection object. The connection ID was obtained earlier when subscribing using conn_id = gapps.subscribe(topic, message).

[]:

gapps.unsubscribe(conn_id)

[image: GridAPPS-D-narrow.png]

Using the Timeseries API

Introduction to the Timeseries API

The Timeseries API is used to query the Influx Database, which stores measurement data from simulations. The API calls can be used to * obtain weather data * obtain measurements from simuation data using measurement mRIDs * obtain equipments commands and other simulation input data * obtain simulated field data from the Sensor Service

API Syntax Overview

Application passes query to GridAPPS-D Platform

First, the application creates a query message for requesting information about the desired power system components in the format of a JSON string or equivalant Python dictionary object. The syntax of this message is explained in detail below.

The query is sent using the gapps.get_response(topic, message) method on the Timeseries queue channel with a response expected back from the GridAPPS-D platform within the specified timeout period.

The application then passes the query through the Timeseries API to the GridAPPS-D Platform, which publishes it to the goss.gridappsd.process.request.data.timeseries queue channel on the GOSS Message Bus. If the app is authenticated and authorized to pass queries, the query message is delivered to the Data Managers, which obtain the desired information from the Timeseries Influx Database.

GridAPPS-D Platform responds to Application query

The Data Managers then publish the response from the Timeseries Influx Database to the appropriate queue channel. The Timeseries API then returns the desired information back to the application as a JSON message or equivalant Python dictionary object.

API Communication Channel

API calls to the timeseries databases use a static /queue/ channel, which was covered in Lesson 3.1. The topic can be specified as a text string or by importing the topics library:

Text String: The topic can be specified as a static string:

	topic = "goss.gridappsd.process.request.data.timeseries"

	gapps.get_response(topic, message)

GridAPPSD-Python Library Method: The correct topic can also be imported from the GridAPPSD-Python topics library:

	from gridappsd import topics as t

	gapps.get_response(t.TIMESERIES, message)

Structure of a Query Message

Queries passed to Timeseries API are formatted as python dictionaries or equivalent JSON scripts wrapped as a python string.

The accepted set of key-value pairs for the Timeseries API query message is

message = """
{
 "queryMeasurement": "INSERT QUERY HERE",
 "queryFilter": {"key1": "value1"
 "key2": "value2"},
 "responseFormat": "JSON"
}

The components of the message are as follows:

	"queryMeasurement": – Specifies the type of measurement being requested. Allowed queryMeasurement values are listed in the next section.

	"queryFilter": – Filters the measurements to just the set values desired by the application. The set of allowed values depends on the value associated with queryMeasurement.

	"responseFormat": – Specifies the format of the response, can be "JSON", "CSV", or "XML". (CAUTION: the Timeseries API uses the key reponseFormat, while the PowerGridModel API uses the key resultFormat. Using the wrong key for either API will result in a java.lang error.)

The usage of each of these message components are explained in detail with code block examples below.

Important: Be sure to pay attention to placement of commas (,) at the end of each line. Commas are placed at the end of each line except the last line. Incorrect comma placement will result in a JsonSyntaxException.

All of the queries are passed to the Timeseries API using the .get_response(topic, message) method for the GridAPPS-D platform connection variable.

Specifying the queryMeasurement value

Below are the allowable values associated with the queryMeasurement key, which are used to specify the type of data requested by each query. Executable code block examples are provided for each of the requests in the subsections below.

	"queryMeasurement": "weather" – Query for weather data

	"queryMeasurement": "simulation" – Query for simulation output data and query for simulation intput data

	"queryMeasurement": "gridappsd-sensor-simulator" – Query for sensor service data

Querying for Timeseries Data

This section outlines the details of key-value pairs for the possible queries associated with each value of the queryMeasurement key listed above.

Querying for Weather Data

Interpreting GridAPPS-D Weather Data

The weather data is based on exported data collected from the Solar Radiation Research Laboratory (39.74N,105.18W,1829 meter elevation) January - December 2013. The original dataset was based in Mountain Standard Time (MST).

The original column names included engineering units, but could not be included during data import. Below is a mapping between the exported column headers and the fields in the Influx database management system.

Original Exported Data Influx Measurement Field Key Field Type
------------------------------------ ---------------------------- ----------
DATE (MM/DD/YYYY) DATE String
MST MST String
Global CM22 (vent/cor) [W/ft^2] GlobalCM22 Float
Direct CH1 [W/ft^2] DirectCH1 Float
Diffuse CM22 (vent/cor) [W/ft^2] Diffuse Float
Tower Dry Bulb Temp [deg F] TowerDryBulbTemp Float
Tower RH [%] TowerRH Float
Avg Wind Speed @ 42ft [MPH] AvgWindSpeed Float
Avg Wind Direction @ 42ft [deg from N] AvgWindDirection Float

Original Exported Data Influx Measurement Tag Type
------------------------------------ ---------------------------- ----------
n/a lat String
n/a long String
n/a place String

Querying Weather Data

GridAPPS-D contains one year of weather data (details given in next subsection), which can be obtained with the following query

Measurement request key-value pair:

	"queryMeasurement": "weather"

Allowed key-value pairs for queryFilter:

"queryFilter": { KEY VALUE
 "startTime": epoch time number,
 "endTime": epoch time number,
 "AvgWindDirection": number,
 "AvgWindSpeed": number,
 "Diffuse": number,
 "DirectCH1": number,
 "GlobalCM22": number,
 "MST": number,
 "TowerDryBulbTemp": number,
 "TowerRH": number,
 "lat": string,
 "long": string,
 "place": string }

Not all of the queryFilter key-value pairs need to be used. These are filters that can be used to restrict the returned data to particular values.

Note: The Timeseries API currently does not support querying for a range of values (e.g. all data for temperature betweeen 25 and 30C). This functionality will be added in a future release. Queries are currently limited to a single value.

Example 1: query for just the data between a given ``”startTime”`` and ``”endTime”``:

[]:

topic = "goss.gridappsd.process.request.data.timeseries" # Specify Timeseries API GridAPPS-D topic

Use queryFilter of "startTime" and "endTime"
message = {
 "queryMeasurement":"weather",
 "queryFilter":{"startTime":"1357048800000000",
 "endTime":"1357048860000000"},
 "responseFormat":"JSON"
}

gapps.get_response(topic, message) # Pass API call

Example 2: Query for weather data of particular values:

[]:

topic = "goss.gridappsd.process.request.data.timeseries" # Specify Timeseries API GridAPPS-D topic

Use queryFilter of "TowerDryBulbTemp" and "AvgWindSpeed"
message = {
 "queryMeasurement":"weather",
 "queryFilter":{"TowerDryBulbTemp": 30.0326,
 "AvgWindSpeed": 7.4624},
 "responseFormat":"JSON"
}

gapps.get_response(topic, message) # Pass API call

Query for Simulation Output Data

All of the measurement output from a simulation is stored in the Influx Database and can be queried with the Timeseries API

Measurement request key-value pair:

	"queryMeasurement": "simulation"

Allowed key-value pairs for queryFilter for output data

"queryFilter": { KEY VALUE
 "startTime": epoch time number ,
 "endTime": epoch time number ,
 "measurement_mrid": string OR [array of string values] ,
 "simulation_id": numeric string ,
 "hasSimulationMessageType": "OUTPUT" OR "INPUT" ,
 "angle": number ,
 "magnitude": number }

The query response will be in the form

{'data': [{'hasSimulationMessageType': 'OUTPUT',
 'measurement_mrid': '_meas1-1234-abcd-mrid',
 'angle': number,
 'magnitude': number,
 'simulation_id': 'string',
 'time': number},
 {'hasSimulationMessageType': 'OUTPUT',
 'measurement_mrid': '_meas2-2345-bcde-mrid',
 'angle': number,
 'magnitude': number,
 'simulation_id': 'string',
 'time': number},

 ...
]
}

In the Getting Started section of this tutorial, we started a demo simulation of the IEEE 123 node model. We can pass queries to the Timeseries API to retrieve measurements from the completed simulation. Note that it sometimes takes up to a minute for simulation data written to the Timeseries Database to be available for queries.

Example 1: Query for all measurements between a ``”startTime”`` and ``”endTime”``

It is recommended to use a 3 second time interval between startTime and endTime to ensure that simulation measurements are found by the Timeseries Database.

[]:

topic = "goss.gridappsd.process.request.data.timeseries" # Specify Timeseries API GridAPPS-D topic

Use queryFilter of "startTime" and "endTime"
message = {
 "queryMeasurement": "simulation",
 "queryFilter": {
 "simulation_id": simulation_id,
 "startTime": "1570041114",
 "endTime": "1570041117"},
 "responseFormat": "JSON"
}

gapps.get_response(topic, message) # Pass API call

Example 2: Query for all measurements associated with list of measurement mRIDs

[]:

topic = "goss.gridappsd.process.request.data.timeseries" # Specify Timeseries API GridAPPS-D topic

Query for a particular set of measurments
message = {
 "queryMeasurement":"simulation",
 "queryFilter":{"simulation_id": simulation_id,
 "measurement_mrid":["_5e2645c3-df1b-4fe7-919e-e1d5274f96cf","_4c0e6f4f-79c4-47c7-afbc-475fa6a6e8e6"]},
 "responseFormat":"JSON"
}

gapps.get_response(topic, message) # Pass API call

[]:

topic = "goss.gridappsd.process.request.data.timeseries" # Specify Timeseries API GridAPPS-D topic

Query for a particular set of measurments
message = {
 "queryMeasurement":"simulation",
 "queryFilter":{"simulation_id": simulation_id,
 "measurement_mrid":"_e302d534-9a09-461c-b541-a6ec77ec8f5c"},
 "responseFormat":"JSON"
}

gapps.get_response(topic, message) # Pass API call

Query for Simulation Input Data

All of the equipment control commands and other input data from a simulation is stored in the Influx Database and can be queried with the Timeseries API

Measurement request key-value pair:

	"queryMeasurement": "simulation"

Allowed key-value pairs for queryFilter for output data

"queryFilter": { KEY VALUE
 "startTime": epoch time number ,
 "endTime": epoch time number ,
 "measurement_mrid": mRID string OR [array of string values] ,
 "simulation_id": numeric string ,
 "hasSimulationMessageType": "OUTPUT" OR "INPUT" ,
 hasMeasurementDifference "FORWARD" OR "REVERSE" ,
 attribute string ,
 difference_mrid mRID string ,
 object string ,
 value number }

Known issue in GridAPPS-D releases_2019.09.0: Events passed from the Test Manager or from a Configuration File are not registering correctly in the Influx database. Simulation Input from operator control actions in the viz are being stored correctly. For this example, run a simulation of the 123 Node Model in the Viz and open any switch. Then copy the simulation_id and paste it into the first code block below.

Example 1: Query for all simulation input commands

[]:

viz_simulation_id = "2043209294"

[]:

topic = "goss.gridappsd.process.request.data.timeseries" # Specify Timeseries API GridAPPS-D topic

Query for all equipment command inputs passed to simulation
message = {
 "queryMeasurement": "simulation",
 "queryFilter": {
 "simulation_id": simulation_id,
 "hasSimulationMessageType": "INPUT"},
 "responseFormat": "JSON"
}

gapps.get_response(topic, message) # Pass API call

Query for Sensor Service Data

Using the Sensor Service

The GridAPPS-D Sensor Service simulates the noise and packet losses of real field device measurements based upon the magnitude of “prestine” simulated values from the GridLab-D simulation. This service has been specifically designed to work within the gridappsd platform container. The GridAPPS-D platform will start the service when it is specified as a dependency of an application or when a service configuration is specified within the GridAPPS-D Visualization.

Python Application Usage: The python application using this service should require gridappsd-sensor-simulator as a requirement. In addition, the following python code shows how to get the correct topic for the service.

Service Configuration: The sensor-config in the above image shows an example of how to configure a portion of the system to have sensor output. Each mrid (such as _99db0dc7-ccda-4ed5-a772-a7db362e9818) will be monitored by this service and either use the default values or use the specified values during the service runtime.

The general format for the Sensor Service configuration message is

{
 "_99db0dc7-ccda-4ed5-a772-a7db362e9818": {
 "nominal-value": 100,
 "perunit-confidence-band": 0.01,
 "aggregation-interval": 30,
 "perunit-drop-rate": 0.01
 },
 "_ee65ee31-a900-4f98-bf57-e752be924c4d":{},
 "_f2673c22-654b-452a-8297-45dae11b1e14": {}
}

The other options for the service are:

	"default-perunit-confidence-band"

	"default-aggregation-interval"

	"default-perunit-drop-rate"

	"passthrough-if-not-specified"

These options will be used when not specified within the sensor-config block.

Note: Currently the nominal-value is not looked up from the database. At this time services aren’t able to tell the platform when they are “ready”. This will be implemented in the near future and then all of the nominal-values will be queried from the database.

A complete example of Sensor Service configuration is available in the sample python script Run123NodeSensorServiceDemo.py for three measurements in the IEEE 123 Node Model generated over a two minute simulation.

Querying Sensor Service Data

All of the simulated field measurements created by the Sensor Service are stored in the Influx Database and can be queried using the Timeseries API:

Measurement request key-value pair:

	"queryMeasurement": "gridappsd-sensor-simulator"

Allowed key-value pairs for queryFilter for output data

"queryFilter": { KEY VALUE
 "startTime": number ,
 "endTime": number ,
 "measurement_mrid": string OR [array of string values] ,
 "simulation_id": string ,
 "angle": number ,
 "magnitude": number ,
 "value" number }

Example 1: Query for all Sensor Service Data between a given ``”startTime”`` and ``”endTime”``:

[]:

topic = "goss.gridappsd.process.request.data.timeseries" # Specify Timeseries API GridAPPS-D topic

Query for all Sensor Service Data in time range:
message = {
 "queryMeasurement": "gridappsd-sensor-simulator",
 "queryFilter": {"simulation_id": simulation_id,
 "startTime": "157004114",
 "endTime": "1570041117"},
 "responseFormat": "JSON"
}

gapps.get_response(topic, message) # Pass API call

[image: gridappsd-logo]

Using the Logging API

Introduction to the Logging API

The Logging API enables applications to subscribe to real-time log messages from a simulation, query previously logged messages from the MySQL database, and publish messages to their either own log or their GridAPPS-D logs.

[image: subscribe-publish-to-logs]

API Communication Channel

As with the Simulation API, the logging API uses both static /queue/ and dynamic /topic/ communication channel names depending on whether the API is being used for real-time simulation logs or historic logs that have already been saved in the database.

For a review of GridAPPS-D topics, see Lesson 1.4.

The correct topic for each Logging API call will be provided in the corresponding section for each API task below.

Message Structure

Logging messages in the GridAPPS-D environment follow the format of a python dictionary or equivalent JSON string with the format below.

{ KEY VALUE
 "source": filename,
 "processId": simulation_id,
 "timestamp": epoch time number,
 "processStatus": "STARTED" or "STOPPED" or "RUNNING" or "ERROR" or "PASSED" or "FAILED",
 "logMessage": string,
 "logLevel": "INFO" or "DEBUG" or "ERROR",
 "storeToDb": true or false
}

All of the messages from a single instantiation will have the same format, with the only difference being the logMessage. As a result, it is possible to use the shortcuts available from the GridAPPSD-Python library to build out the repetitive portions of the message and pass just the logMessage string.

GridAPPSD-Python Logging API Extensions

The GridAPPSD-Python library uses several extensions to the standard Python logging library that enable applications to easily create log messages using the same syntax. These extensions support the additional log message formatting required by GridAPPS-D, such as simulation_id, log source, and process status.

The following code block enables the

[]:

import logging
import os

os.environ['GRIDAPPSD_APPLICATION_ID'] = 'gridappsd-sensor-simulator'
os.environ['GRIDAPPSD_APPLICATION_STATUS'] = 'STARTED'
os.environ['GRIDAPPSD_SIMULATION_ID'] = opts.simulation_id

Important! Run this import command *BEFORE* creating the GridAPPS-D connection object gapps = GridAPPSD(...).

Note: If your application is containerized in Docker and registered with the GridAPPS-D platform using the docker-compose file, these extensions will be imported automatically.

Subscribing to Simulation Logs

Similar to the two approaches used to subscribe to simulation measurements discussed in Comparison of Subscription Approaches, it is possible to use either a function or a class definition to subscribe to the simulation logs.

Subscription API Communication Channel

This is a dynamic /topic/ communication channel that is best implemented by importing the GriAPPSD-Python library function for generating the correct topic.

	from gridappsd.topics import simulation_log_topic

	log_topic = simulation_log_topic(simulation_id)

Note on Jupyter Notebook environment: In the examples below, the Jupyter Notebook environment does not update definitions of the subscription object or function definitions. As a result, it is necessary to restart the notebook kernel. The gapps connection object definition is included again for convenience in executing the notebook code blocks

[]:

viz_simulation_id = "paste sim id here"

Establish connection to GridAPPS-D Platform:
from gridappsd import GridAPPSD

Set environment variables - when developing, put environment variable in ~/.bashrc file or export in command line
export GRIDAPPSD_USER=system
export GRIDAPPSD_PASSWORD=manager

import os # Set username and password
os.environ['GRIDAPPSD_USER'] = 'tutorial_user'
os.environ['GRIDAPPSD_PASSWORD'] = '12345!'

Connect to GridAPPS-D Platform
gapps = GridAPPSD(viz_simulation_id)
assert gapps.connected

[]:

from gridappsd.topics import simulation_log_topic
log_topic = simulation_log_topic(viz_simulation_id)

Note on Jupyter Notebook environment: In the examples below, the Jupyter Notebook environment does not update definitions of the subscription object or function definitions. As a result, it is necessary to restart the notebook kernel. The gapps connection object definition is included again for convenience in executing the notebook code blocks

Subscribing using a Function Definition

The first approach used to subscribe to measurements is to define a function with the correct set of arguments that is then passed to the .subscribe() method associated with the GridAPPPSD() object.

The function does not require a specific name, and is somewhat easier to define and use. However, the arguments of the function need to be named correctly for the GridAPPSD-Python library to process the simulation output correctly.

The format for the function definition is

def myLogFunction(header, message):
 # do something when receive a log message
 # do something else

That function handle is then passed as an argument to the .subscribe(topic, function_handle) method:

[]:

def demoLogFunction(header, message):
 timestamp = message["timestamp"]
 log_message = message["logMessage"]

 print("Log message received at timestamp ", timestamp, "which reads:")
 print(log_message)
 print("........................")

[]:

gapps.subscribe(log_topic, demoLogFunction)

Subscribing using a Class Definition

The second approach used to subscribe to simulation logs is to define add a custom method to the same class with __init__ and on_message methods that was created to subscribe to measurements.

Unlike the Simulation API, the Logging API does not require a specific name for the method used to subscribe to log messages.

It is possible to create additional methods in the subscription class definition to enable the app to subscribe to additional topics, such as the simulation log topic, as shown in the example below.

[]:

class PlatformDemo(object):
 # A simple class for interacting with simulation

 def __init__(self, simulation_id, gapps_obj):
 # Initialize variables and attributes
 self._gapps = gapps_obj
 self._simulation_id = simulation_id
 # self.foo = bar

 def on_message(self, headers, message):
 # Do things with measurements
 meas_value = message["message"]["measurements"]
 # Do more stuff with measurements

 def my_logging_method(self, headers, message):
 timestamp = message["timestamp"]
 log_message = message["logMessage"]

 print("Log message received at timestamp ", timestamp, "which reads:")
 print(log_message)
 print("........................")

[]:

Create subscription object
demo_obj = PlatformDemo(viz_simulation_id, gapps)

Subscribe to logs using method
gapps.subscribe(log_topic, demo_obj.my_custom_method)

Publishing to Simulation Logs

The GridAPPSD-Python library enables use of the standard Python logging syntax to create logs, publish them to the GOSS Message Bus, and store them in the MySQL database.

Documentation of the standard Python logging library is available on Python Docs [https://docs.python.org/3/library/logging.html].

It is possible to publish to either local app logs (which are more useful for debugging) or the GridAPPS-D logs (which can be accessed by other applications and should be used for completed applications).

5.1. Publishing to Local App Logs

The first approach is to use the default Python logger to write to local app logs by importing the logging library and then use the .getLogger() method from the Python library.

[]:

import logging

python_log = logging.getLogger(__name__)

Log messages can then be published by invoking the methods

	python_log.debug("log message")

	python_log.info("log message")

	python_log.warning("log message")

	python_log.error("log message")

	python_log.fatal("log message")

5.2. Publishing to GridAPPS-D Logs

The second approach is to use the GridAPPS-D logs. Importing the python logging library is not necessary. Instead initialize a logging object using the .get_logger() method associated with the GridAPPS-D connection object. Note the difference in spelling of the GridAPPS-D Library and default Python Library methods.

[]:

gapps_log = gapps.get_logger()

Log messages can then be published by invoking the methods

	gapps_log.debug("log message")

	gapps_log.info("log message")

	gapps_log.warning("log message")

	gapps_log.error("log message")

	gapps_log.fatal("log message")

Querying Saved Logs

Log messages published using the Logging API and the GOSS Message Bus are saved to the MySQL database. These log messages can be accessed with a Logging API query.

Log Query API Communication Channel

The query for logs uses a static /queue/ channel that is imported from the GridAPPS-D Topics library.

This topic is used with the .get_response(topic, message) method associated with the GridAPPS-D connection object.

	from gridappsd import topics as t

	gapps.get_response(t.LOGS, message)

Structure of the Log Query Message

The first approach to querying with the Logging API is to use a python dictionary or equivalent JSON string that follows formatting similar to the query messages used by all the other GridAPPS-D APIs:

[]:

from gridappsd import topics as t

message = {
 "source": "ProcessEvent",
 "processId": viz_simulation_id,
 "processStatus": "INFO",
 "logLevel": "INFO"
}

gapps.get_reponse(t.LOGS, message)

[image: GridAPPS-D-narrow.png]

Resilient Restoration (WSU)

[image: ../../../_images/website.PNG]
An advanced distribution management system (ADMS) supports grid management and decision support applications to address the growing operational challenges faced by the modern electric power distribution systems while ensuring reliable and resilient operations. In this document, we describe the development of the proposed fault location, isolation, and restoration (FLISR) and it’s integration with an open-source standards-based platform for ADMS application development viz. GridAPPS-D, developed by Pacific Northwest National Laboratory (PNNL).

Essentially, an ADMS allows for applications that can readily access information from various systems including, but not limited to Distributed Energy Resource Management System (DERMS), Supervisory Control and Data Acquisition (SCADA), Outage Management Systems (OMS), Graphical Information Management Systems (GIS), and Advanced Metering Infrastructure (AMI). Recently, researchers at PNNL developed an open-source ADMS application development platform, GridAPPS-D, that provides an open-source, extensible application development environment. These new developments call for research not only on advanced applications for the distribution systems that leverage the interoperability of the ADMS platform but also on providing a proof-of-concept for integrating such advanced applications into the future ADMS.

	Overview
	Application Architecture

	Leveraging the GridAPPS-D Platform

	Definition of Terms

	References

	Contact Us

	Installing GridAPPS-D
	Requirements

	Install Docker on Ubuntu

	Application Setup
	Download the application

	Creating the application container

	Mount the application

	Starting Service
	Start the docker container services

	Restoration application container

	Executing the application container

	Starting GridAPPS-D Platform

	Data Model
	IEEE 8500-Node Test Feeder

	Visualization
	Start a Simulation

	Change Configurations

	Adding an event

	Running the platform

	License

Overview

The electric power distribution system is facing a magnitude of challenges due to an increase in severe weather events leading to widespread network outages, coupled with the growing regulatory requirements for increased reliability and resilience, reduced carbon emissions, and growing distributed energy resources (DER) penetrations. The Fault Location Isolation and Service Restoration (FLISR) is one of the most critical applications currently being adopted by the majority of distribution companies and made available by most ADMS vendors to manage system outages [CIT1].

This report documents the restoration application developed by Washington State University (WSU) and demonstrate its functionality by integrating it with a standards-based open-source platform – GridAPPS-D [https://gridappsd.readthedocs.io/en/master/], developed by the Pacific Northwest National Laboratory (PNNL).

Application Architecture

The proposed restoration application can be implemented in an advanced distribution management system (ADMS) as shown in Figure 1. Figure shows the overall architecture of a modern DMS with integration of several subsystems such as customer information system (CIS), geographical information system (GIS), interactive voice response (IVR), advanced metering infrastructure (AMI), SCADA and flowchart of the proposed DSR framework. Once a power outage happens, three specific tasks are performed in the DMS to restore the power to out-of-service area:

	Information Collection: To monitor the power distribution system condition and gather resource information.

	Information Processing: For system model identification and fault location.

	Service Restoration: To find the candidate switch and generate DER control signals for circuit reconfiguration.

[image: flowchart]

Figure 1: Architecture of a modern distribution management system and flowchart of the proposed restoration application.

Leveraging the GridAPPS-D Platform

The realization of an autonomous restoration application requires a measurement and control environment that provides post-fault situational awareness and the ability to remotely deploy the decisions for restoration.
GridAPPS-D is an open-source, standards-based platform designed to support the development of advanced, data-driven distribution system operation and/or planning applications that take advantage of the data-rich environment expected in modernized electric power distribution systems with smart grid technologies.

Figure 2 shows a schematic for the interaction and communication among the distribution system operational sub-system for the proposed restoration application. The platform is typically integrated with other related data and decision-support systems/subsystems such as DERMS, SCADA, OMS, GIS, AMI, CIS to: a) monitor the distribution system conditions, b) obtain the DER availability and operating conditions, and c) for load estimation and control.

[image: archi]

Figure 2: Integration of proposed application to the GridAPPS-D platform. GOSS/FNCS is the PNNL’s platform for data exchange among subsystems. GOSS: GridOPTICS Software System; FNCS: Framework for network simulation.

Definition of Terms

Fault - Opening of normally-closed switch in response to any abnormal operating condition on its downstream.

Platform - Refers to GridAPPS-D platform.

Simulation - A real world distribution system currently done by GridLAB-D

Simulator - In current release GridLAB-D serves as the simulator.

CPLEX - A commercial optimization software package for solving the large-scale optimization problem

GridLAB-D - GridLAB-D is a distribution level powerflow simulator. It acts as the real world distribution system in GridAPPS-D.

Power System Model - A modified IEEE 8500-node feeder is used as the test case

References

	CIT1

	A. Dubey, A. Bose, M. Liu and L. N. Ochoa, “Paving the Way for Advanced Distribution Management Systems Applications: Making the Most of Models and Data,” in IEEE Power and Energy Magazine, vol. 18, no. 1, pp. 63-75, Jan.-Feb. 2020

	CIT2

	S. Poudel, A. Dubey and K. P. Schneider, “A Generalized Framework for Service Restoration in a Resilient Power Distribution System,” Submitted to IEEE Systems Journal (Under Revision)

	CIT3

	S. Poudel and A. Dubey, “Critical Load Restoration Using Distributed Energy Resources for Resilient Power Distribution System,” in IEEE Transactions on Power Systems, vol. 34, no. 1, pp. 52-63, Jan. 2019.

	CIT4

	S. Poudel, A. Dubey and A. Bose, “Risk-Based Probabilistic Quantification of Power Distribution System Operational Resilience,” in IEEE Systems Journal, doi: 10.1109/JSYST.2019.2940939.

	CIT5

	S. Poudel and A. Dubey, “A Graph-theoretic Framework for Electric Power Distribution System Service Restoration,” 2018 IEEE Power & Energy Society General Meeting (PESGM), Portland, OR, 2018, pp. 1-5.

	CIT6

	S. Poudel, A. Dubey, P. Sharma, and K. P. Schneider, “A Standalone FLISR Application Using GridAPPS-D – Standards-Based Open-Source ADMS Platform,” in prep for IEEE Power and Energy Technology Systems Journal

	CIT7

	S. Poudel, A. Dubey, and A. Bose, “Probabilistic Quantification of Power Distribution System Operational Resilience,” 2019 IEEE Power & Energy Society General Meeting (PESGM), Atlanta, GA, 2019, pp. 1-5

	CIT8

	S. Poudel, M. Mukherjee and A. Dubey, “Optimal Positioning of Mobile Emergency Resources for Resilient Restoration,” 2018 North American Power Symposium (NAPS), Fargo, ND, 2018, pp. 1-6.

	CIT9

	W. H. Kersting, “Radial distribution test feeders,” in 2001 IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No.01CH37194), 2001, pp. 908-912 vol.2.

	CIT10

	R. F. Arritt and R. C. Dugan, “The IEEE 8500-node test feeder,” in IEEE PES T&D 2010, pp. 1-6.

Contact Us

WSU team can be reached at shiva.poudel@wsu.edu or anamika.dubey@wsu.edu.

For more information about the lab, Click Here [https://eecs.wsu.edu/~adubey/]

Installing GridAPPS-D

GridAPPS-D is available using docker containers

Requirements

	git

	docker version 17.12 or higher

	docker-compose version 1.16.1 or higher

Install Docker on Ubuntu

	Clone or download the repository

gridappsd@gridappsd-VirtualBox:~$ git clone https://github.com/GRIDAPPSD/gridappsd-docker
gridappsd@gridappsd-VirtualBox:~$ cd gridappsd-docker

	run the docker-ce installation script

gridappsd@gridappsd-VirtualBox:~/gridappsd-docker$./docker_install_ubuntu.sh

	log out of your Ubuntu session and log back in to make the docker groups change active

Application Setup

Download the application

	Clone or download the repository. The updated code is in the develop branch.

gridappsd@gridappsd-VirtualBox:~$ git clone https://github.com/shpoudel/WSU-Restoration -b develop
gridappsd@gridappsd-VirtualBox:~$ cd WSU-Restoration

Creating the application container

	From the command line execute the following commands to build the wsu-restoration container. Note that there is a dot at end of command.

gridappsd@gridappsd-VirtualBox:~/WSU-Restoration$ docker build --network=host -t wsu-restoration-app .

Mount the application

	Add following to the docker-compose.yml file if CPLEX is available

wsu_res_app:
image: wsu-restoration-app
volumes:
 - /opt/ibm/ILOG/CPLEX_Studio129/:/opt/ibm/ILOG/CPLEX_Studio129
environment:
 GRIDAPPSD_URI: tcp://gridappsd:61613
depends_on:
 - gridappsd

	Add following to the docker-compose.yml file if CPLEX is not available. In addition, replace prob.solve(CPLEX(msg=1)) with prob.solve() in restoration_WSU.py

wsu_res_app:
image: wsu-restoration-app
environment:
 GRIDAPPSD_URI: tcp://gridappsd:61613
depends_on:
 - gridappsd

Starting Service

Start the docker container services

	Note that this documentation is based on develop tag

gridappsd@gridappsd-VirtualBox:~/gridappsd-docker$./run.sh -t develop

	The run.sh does the following
	
	download the mysql dump file

	download the blazegraph data

	start the docker containers

	ingest the blazegraph data

	connect to the gridappsd container

The message in the container looks something like this:

Starting gridappsddocker_redis_1 ...
Starting gridappsddocker_proven_1 ...
Starting gridappsddocker_blazegraph_1 ...
Starting gridappsddocker_influxdb_1 ...
Starting gridappsddocker_mysql_1 ... done
Starting gridappsddocker_gridappsd_1 ... done
Starting gridappsddocker_wsu_res_app_1 ...
Starting gridappsddocker_wsu_res_app_1 ... done

Getting blazegraph status

Checking blazegraph data

Blazegrpah data available (1954268)

Getting viz status

Containers are running

Connecting to the gridappsd container
docker exec -it gridappsddocker_gridappsd_1 /bin/bash

gridappsd@78a3d22dd2b9:/gridappsd$

Restoration application container

gridappsd@gridappsd-VirtualBox:~/WSU-Restoration$ docker exec -it gridappsddocker_wsu_res_app_1 bash

	This will take you inside the application container.

root@1b762c641f24:/usr/src/gridappsd-restoration#

At this point, we should have two terminal open with gridappsd-docker container and restoration application terminal.

root@1b762c641f24:/usr/src/gridappsd-restoration#
gridappsd@78a3d22dd2b9:/gridappsd$

	Installing CPLEX in container

	Note that the installation command can be written inside the Dockerfile beforehand. However, we do the installation here manually before starting the platform.

root@1b762c641f24:/usr/src/gridappsd-restoration# cd /opt/ibm/ILOG/CPLEX_Studio129/cplex/python/3.6/x86-64_linux/
root@1b762c641f24:/opt/ibm/ILOG/CPLEX_Studio129/cplex/python/3.6/x86-64_linux# python setup.py install

	ATTENTION: It is required that the application container has the python version compatible with the CPLEX. For example, CPLEX_STUDIO129 requires python 3.6. Thus, Python3.6 should be made available in the application container.

Executing the application container

	Now, get back to the path where application is mounted.

root@1b762c641f24:/opt/ibm/ILOG/CPLEX_Studio129/cplex/python/3.6/x86-64_linux# cd /usr/src/gridappsd-restoration

	The following runs the application from terminal

root@1b762c641f24:/usr/src/gridappsd-restoration# cd Restoration
root@1b762c641f24:/usr/src/gridappsd-restoration/Restoration# python main.py [simulation_ID] '{"power_system_config": {"Line_name":"_AAE94E4A-2465-6F5E-37B1-3E72183A4E44"}}'

	Running application from the terminal requires Simulation_ID. To get the correct Simulatio_ID, we need to start the platform through the browser. This will be explained in detail in the next section (Visualization).

Starting GridAPPS-D Platform

	Start the platform from the gridappsd-docker container

gridappsd@78a3d22dd2b9:/gridappsd$./run-gridappsd.sh

	Following message can be seen at the end of running terminal. This confirms, the platform is running and we can start the application from the browser.

Registering user roles: application2 -- application
Registering user roles: application1 -- application
Registering user roles: operator3 -- operator
Registering user roles: operator2 -- operator
Registering user roles: evaluator2 -- evaluator,operator
Registering user roles: operator1 -- operator
Registering user roles: evaluator1 -- evaluator,operator
Registering user roles: testmanager2 -- testmanager
Registering user roles: testmanager1 -- testmanager
Registering user roles: service2 -- service
Registering user roles: service.pid -- pnnl.goss.gridappsd.security.rolefile
Registering user roles: service1 -- service
CREATING LOG DATA MGR MYSQL
{"id":"WSU_restoration","description":"Resilient Restoration Application","creator":"WSU","inputs":[],"outputs":[],"options":["(simulationId)","\u0027(request)\u0027"],"execution_path":"python /usr/src/gridappsd-restoration/Restoration/main.py","type":"REMOTE","launch_on_startup":false,"prereqs":["gridappsd-voltage-violation","gridappsd-alarms"],"multiple_instances":true}
{"heartbeatTopic":"/queue/goss.gridappsd.remoteapp.heartbeat.WSU_restoration","startControlTopic":"/topic/goss.gridappsd.remoteapp.start.WSU_restoration","stopControlTopic":"/topic/goss.gridappsd.remoteapp.stop.WSU_restoration","errorTopic":"Error","applicationId":"WSU_restoration"}

Data Model

IEEE 8500-Node Test Feeder

An IEEE Working Group specified a set of distribution test circuits [CIT9] and we have chosen the largest one of these as a sample circuit for GridAPPS-D which is IEEE 8500-Node model [CIT10]. The original 8500-Node test feeder operates at 12.47 kV and has a peak load of about 11 MW,
including approximately 1100 single-phase, center-tapped transformers with triplex service drops. Loads are balanced between the two center-tapped windings. The circuit includes 4 shunt capacitor banks and 6 voltage regulator banks, making it a reasonable test for solving voltage problems such as VVO. The circuit is splitted into three substation and several new distributed energy resources (DERs) are added in the test case (See Fig. 3). In addition, 7 tie switches are added such that each substation can share the load of another substation during fault to restore the outage customers. A new set of loads is added near S2 and the region is referred to as a new neighborhood.

	The detailed model of this feeder can be found at:

https://github.com/GRIDAPPSD/Powergrid-Models/tree/develop/blazegraph/test/dss/WSU

	The OpenDSS data can be extracted here:

https://github.com/shpoudel/D-Net

[image: model]

Figure 3: Modified IEEE 85000-node feeder.

The model in GridAPPS-D came from the IEEE 8500-Node input files distributed with
OpenDSS, exported to CIM from OpenDSS, and then imported to the GridAPPS-D data
manager. In this automated process, four changes were implemented:

	Use constant-current load models, rather than constant-power load models. This is necessary for the solution to converge at peak load. Voltages at peak load are low, and a constant-power load will draw more current under those conditions. Holding the current magnitude constant allows GridLAB-D to achieve convergence under a variety of operating conditions. This is an appropriate compromise in accuracy for real-time applications, which need to be robust through wide variations in voltage and load. In contrast, planning applications usually need more accurate load models, even at the possible expense of re-running some non-converged simulations.

	Disable automatic regulator and capacitor controls. The volt-var application, described below, will supersede these settings. If a developer or user is testing the GridLAB-D model outside of GridAPPS-D, these control settings should be re-enabled in order to solve the circuit at peak load. That requires manual un-commenting edits to the GridLAB-D input file.

	Substitute a variable called VSOURCE for the SWING bus nominal voltage. This needs to be set at 1.05 per-unit of nominal on the 115-kV system (i.e. 69715.065) in order to solve at peak load. Other conditions may require different source voltage values.

	Use a schedule for the loads so they can vary with time during GridAPPS-D simulation. The file should be named zipload_schedule.player.

Visualization

Start a Simulation

	Open your browser to http://localhost:8080/ and click the menu button.

[image: menu]

	Choose Simulations from the menu.

[image: simulations]

Change Configurations

	Change the Power System Configuration, Simulation Configuration, Application Configuration, and Test Configuration as follows:

[image: psc]

[image: sc]

[image: ac]

	Communication outage and fault events can be added using the Test Configuration page as shown below. Event can be added using radio button or upload option.

[image: tc]

	Click the submit button to save all the configurations.

Adding an event

	Since we are running the restoration application, a fault event is required to trigger the application. Before proceeding, an event file is required. There are several ways to add event in the test feeder. Here, we use the upload option and use the following JSON file.

{
 "commandEvents": [
 {
 "message": {
 "forward_differences": [
 {
 "object": "_24A93B95-B674-4451-8670-35391D5F51F0",
 "attribute": "Switch.open",
 "value": 1
 }
],
 "reverse_differences": [
 {
 "object": "_24A93B95-B674-4451-8670-35391D5F51F0",
 "attribute": "Switch.open",
 "value": 0
 }
]
 },
 "event_type": "ScheduledCommandEvent",
 "occuredDateTime": "2013-07-14 08:02:00",
 "stopDateTime": "2013-07-14 09:00:00"
 }
]
}

	This event opens a switch (LN0895780_SW) in the feeder at time 2013-07-14 08:02:00 and remains open until 09:00:00. Please adjust the Start time in Simulation Configuration based on occuredDateTime of the event such that event occurs after the simulation has started.

Running the platform

	After few seconds, the test-feeder will load. In the meantime, use “Edit plots” to add power, voltage and tap of different components to visualize as the simulation progress.

	Click on the triangle to start the simulation. Once you get the Simulation_ID, use it to run the application in terminal. See the python command here [https://gridappsd-restoration.readthedocs.io/en/latest/system_confguration/index.html#executing-the-application-container].

	Note that the WSU-Restoration application gets triggered only when the fault event is added in the test case. During normal operation, application stays quite. The occurrence of the event can be verified on the Alarm tab. Once the event has occured, the applicatin starts and runs the optimization problem to generate the candidate switches for optimal circuit reconfiguration. The candidate switches are toggled and the system is restored.

[image: viz]

License

Copyright

 Volt-Var Optimization (WSU)

Volt-Var Optimization (WSU)

This repository contains the restoration application for IEEE 9500-node model (https://github.com/GRIDAPPSD/Powergrid-Models/tree/develop/blazegraph/test/dss/WSU). The application is hosted on GridAPPS-D platform.

Layout

Please clone the repository https://github.com/GRIDAPPSD/gridappsd-docker (refered to as gridappsd-docker repository) next to this repository (they should both have the same parent folder)

Creating the restoration application container

	From the command line execute the following commands to build the wsu-restoration container

osboxes@osboxes> cd WSU-VVO-app
osboxes@osboxes> docker build --network=host -t wsu-vvo-app .

	Add the following to the gridappsd-docker/docker-compose.yml file

wsu_vvo:
 image: wsu-vvo-app
 depends_on:
 gridappsd

	Run the docker application

osboxes@osboxes> cd gridappsd-docker
osboxes@osboxes> ./run.sh

you will now be inside the container, the following starts gridappsd

gridappsd@f4ede7dacb7d:/gridappsd$./run-gridappsd.sh

	Run the application container

osboxes@osboxes> cd WSU-VVO-app
osboxes@osboxes> docker exec -it gridappsddocker_wsu_vvo_1 bash

you will now be inside the application container, the following runs the application from terminal

root@1b762c641f24:/usr/src/gridappsd-vvo# cd wsu_vvo
root@1b762c641f24:/usr/src/gridappsd-vvo/wsu_vvo# python main.py 1234 '{"power_system_config": {"Line_name":"_AAE94E4A-2465-6F5E-37B1-3E72183A4E44"}}'

Next to start the application through the viz follow the directions here: https://gridappsd.readthedocs.io/en/latest/using_gridappsd/index.html#start-gridapps-d-platform

Forming optimization problem

In the optimization problem, test feeders are modeled as graph; G (V, E), where V is set of nodes and E is set of edges. The graph and line parameters of the test feeder can be extracted from (https://github.com/shpoudel/D-Net).

Get real-time topology and load data of the test case

First, the real time topology of the test case is extracted from the operating feeder in platform (top_identify.py). Then, load data for each node is obtained (get_Load.py) and stored in json format to be used in linear power flow while writing constraints for optimization problem.

 DER Dispatch (NREL)

DER Dispatch (NREL)

Purpose

The purpose of this repository is to document the chosen way of registering and running applications within a
GridAPPS-D deployment.

Requirements

	Docker ce version 17.12 or better. You can install this via the docker_install_ubuntu.sh script. (note for mint you will need to modify the file to work with xenial rather than ubuntu generically)

Quick Start

	Please clone the repository https://github.com/GRIDAPPSD/gridappsd-docker (refered to as gridappsd-docker repository) next to this repository (they should both have the same parent folder)

git clone https://github.com/GRIDAPPSD/gridappsd-docker
git clone https://github.com/GRIDAPPSD/DER-Dispatch-app

ls -l

drwxrwxr-x 7 osboxes osboxes 4096 Sep 4 14:56 gridappsd-docker
drwxrwxr-x 5 osboxes osboxes 4096 Sep 4 19:06 DER-Dispatch-app

Creating the der-dispatch-app application container

	From the command line execute the following commands to build the der-dispatch-app container

osboxes@osboxes> cd DER-Dispatch-app
osboxes@osboxes> docker build --network=host -t der-dispatch-app .

	Add the following to the gridappsd-docker/docker-compose.yml file

 derdispatch:
 image: der-dispatch-app
 ports:
 - 9001:9001
 environment:
 GRIDAPPSD_URI: tcp://gridappsd:61613
 depends_on:
 - gridappsd
 volumes:
 - $HOME/git/DER-Dispatch-app-Public:/usr/src/gridappsd-der-dispatch

	Run the docker application

osboxes@osboxes> cd gridappsd-docker
osboxes@osboxes> ./run.sh

you will now be inside the container, the following starts gridappsd

gridappsd@f4ede7dacb7d:/gridappsd$./run-gridappsd.sh

	Test opt_function.pyc file.

docker exec -it gridappsd-docker_derdispatch_1 bash

cd der_dispatch_app
This function is slow but it should not hang
python test_opt_function.py

Example output

> python test_opt_function.py
('gridappsd', 61613)
Mon Feb 24 18:20:24 2020
(9480, 9480) (9480, 10)
Mon Feb 24 18:21:22 2020
Mon Feb 24 18:21:29 2020

Application Configuration

Set start time to 2013-07-22 10:30:00

Options:
Run with OPF = 0 and a specific time and duration first to get the baseline for comparison.
Then Run with OPF = 1 and the same time and duration evaluate the applications performance against the baseline.
run_freq - Number of seconds between appliction runs.
run_on_host - True then run on the host machine. False then run in the container.

The baseline will be in this folder in the container:
/usr/src/gridappsd-der-dispatch/der_dispatch_app/adms_result_ieee123pv_house_1563893400_OPF_0_

Baseline run

 {
 "OPF": 0,
 "run_freq": 15,
 "run_on_host": false,
 "run_realtime": true,
 "stepsize_xp": 0.2,
 "stepsize_xq": 2,
 "coeff_p": 0.005,
 "coeff_q": 0.0005,
 "Vupper": 1.025,
 "Vlower": 0.95,
 "stepsize_mu": 50000,
 "optimizer_num_iterations": 10
 }

Optimal Powerflow on Run

Set OPF to 1 and run again.

 {
 "OPF": 1,
 "run_freq": 15,
 "run_on_host": false,
 "run_realtime": true,
 "stepsize_xp": 0.2,
 "stepsize_xq": 2,
 "coeff_p": 0.005,
 "coeff_q": 0.0005,
 "Vupper": 1.025,
 "Vlower": 0.95,
 "stepsize_mu": 50000,
 "optimizer_num_iterations": 10
 }

	docker copy command

docker cp 422635e932bb:/usr/src/gridappsd-der-dispatch/der_dispatch_app/adms_result_test9500new_1374510720_OPF_1_stepsize_xp_0_2_stepsize_xq_2_coeff_p_0_1_coeff_q_5e_neg_05_stepsize_mu_500/ $HOME/

Next to start the application through the viz follow the directions here: https://gridappsd.readthedocs.io/en/latest/using_gridappsd/index.html#start-gridapps-d-platform

python /usr/src/gridappsd-der-dispatch/der_dispatch_app/main_app_new.py 952325492 '{"power_system_config":{"SubGeographicalRegion_name":"_1CD7D2EE-3C91-3248-5662-A43EFEFAC224","GeographicalRegion_name":"_24809814-4EC6-29D2-B509-7F8BFB646437","Line_name":"_EBDB5A4A-543C-9025-243E-8CAD24307380"},"simulation_config":{"power_flow_solver_method":"NR","duration":600,"simulation_name":"ieee123","simulator":"GridLAB-D","start_time":1374510720,"run_realtime":false,"simulation_output":{},"model_creation_config":{"load_scaling_factor":1.0,"triplex":"y","encoding":"u","system_frequency":60,"voltage_multiplier":1.0,"power_unit_conversion":1.0,"unique_names":"y","schedule_name":"ieeezipload","z_fraction":0.0,"i_fraction":1.0,"p_fraction":0.0,"randomize_zipload_fractions":false,"use_houses":false},"simulation_broker_port":59469,"simulation_broker_location":"127.0.0.1"},"application_config":{"applications":[{"name":"der_dispatch_app","config_string":"{\"OPF\": 0, \"run_freq\": 60, \"run_on_host\": false, \"run_realtime\": false, \"stepsize_xp\": 0.2, \"stepsize_xq\": 2, \"coeff_p\": 0.1, \"coeff_q\": 5e-05, \"stepsize_mu\": 500}"}]},"simulation_request_type":"NEW"}' '{OPF:0,run_freq:60,run_on_host:false,run_realtime:false,stepsize_xp:0.2,stepsize_xq:2,coeff_p:0.1,coeff_q:5e-05,stepsize_mu:500}'

python /usr/src/gridappsd-der-dispatch/der_dispatch_app/main_app_new.py 1522305637 '{"power_system_config":{"SubGeographicalRegion_name":"_1CD7D2EE-3C91-3248-5662-A43EFEFAC224","GeographicalRegion_name":"_24809814-4EC6-29D2-B509-7F8BFB646437","Line_name":"_E407CBB6-8C8D-9BC9-589C-AB83FBF0826D"},"simulation_config":{"power_flow_solver_method":"NR","duration":600,"simulation_name":"ieee123","simulator":"GridLAB-D","start_time":1374510720,"run_realtime":false,"simulation_output":{},"model_creation_config":{"load_scaling_factor":1.0,"triplex":"y","encoding":"u","system_frequency":60,"voltage_multiplier":1.0,"power_unit_conversion":1.0,"unique_names":"y","schedule_name":"ieeezipload","z_fraction":0.0,"i_fraction":1.0,"p_fraction":0.0,"randomize_zipload_fractions":false,"use_houses":false},"simulation_broker_port":59469,"simulation_broker_location":"127.0.0.1"},"application_config":{"applications":[{"name":"der_dispatch_app","config_string":"{\"OPF\": 0, \"run_freq\": 60, \"run_on_host\": false, \"run_realtime\": false, \"stepsize_xp\": 0.2, \"stepsize_xq\": 2, \"coeff_p\": 0.1, \"coeff_q\": 5e-05, \"stepsize_mu\": 500}"}]},"simulation_request_type":"NEW"}' '{OPF:0,run_freq:60,run_on_host:false,run_realtime:false,stepsize_xp:0.2,stepsize_xq:2,coeff_p:0.1,coeff_q:5e-05,stepsize_mu:500}'

{"OPF": 0, "run_freq": 60, "run_on_host": false, "run_realtime": true, "stepsize_xp": 0.2, "stepsize_xq": 2, "coeff_p": 0.1, "coeff_q": 5e-05, "stepsize_mu": 500}

 Solar Forecasting (NREL)

Solar Forecasting (NREL)

Solar-Forecast GridAPPS-D Application

Purpose

The application to forecast GHI data

Requirements

	Docker ce version 17.12 or better. You can install this via the docker_install_ubuntu.sh script. (note for mint you will need to modify the file to work with xenial rather than ubuntu generically)

Quick Start

	Please clone the repository https://github.com/GRIDAPPSD/gridappsd-docker (refered to as gridappsd-docker repository) next to this repository (they should both have the same parent folder)

git clone https://github.com/GRIDAPPSD/gridappsd-docker
git clone https://github.nrel.gov/PSEC/Solar-Forecasting

ls -l

drwxrwxr-x 7 osboxes osboxes 4096 Sep 4 14:56 gridappsd-docker
drwxrwxr-x 5 osboxes osboxes 4096 Sep 4 19:06 Solar-Forecasting

Creating the sample-app application container

	From the command line execute the following commands to build the sample-app container

osboxes@osboxes> cd Solar-Forecasting
osboxes@osboxes> docker build --network=host -t solar-forecasting-app .

	Add the following to the gridappsd-docker/docker-compose.yml file

 solar_forecast:
 image: solar-forecast-app
 ports:
 - 9002:9002
 environment:
 GRIDAPPSD_URI: tcp://gridappsd:61613
 depends_on:
 - gridappsd

	Run the docker application

osboxes@osboxes> cd gridappsd-docker
osboxes@osboxes> ./run.sh -t develop

you will now be inside the container, the following starts gridappsd

gridappsd@f4ede7dacb7d:/gridappsd$./run-gridappsd.sh

	Run bokeh on port 9002

python -m bokeh serve --show bokeh_two_plot/ --allow-websocket-origin=*:5006 --args --port 9002

Next to start the application through the viz follow the directions here: https://gridappsd.readthedocs.io/en/latest/using_gridappsd/index.html#start-gridapps-d-platform

If you want to run the application WITHOUT the viz, open another terminal window and move to the solar-forecasting GitHub directory. Perform the following commands:

user@local> export PYTHONPATH=/Users/Solar-Forecasting/
user@local> python solar_forecasting/util/post_goss_ghi.py --start_time 1357140600 --duration 720 --interval 10 -t .1
user@local> python solar_forecasting/util/post_goss_ghi.py --start_time 1370260800 --duration 43200 --interval 60 -t .1

The above options can be changed to a desired output

Docker

Two notes to use inside a docker container:

	Add 9002 to the ports in the gridappsd-docker/docker-compose.yml like this:

 solar_forecasting:
 image: solar-forecasting-app
 ports:
 - 9002:9002
 environment:
 GRIDAPPSD_URI: tcp://gridappsd:61613
 depends_on:
 - gridappsd

>python /usr/src/gridappsd-solar-forecasting/solar_forecasting/app/main.py 1112306683 '{"power_system_config": {"SubGeographicalRegion_name": "_1CD7D2EE-3C91-3248-5662-A43EFEFAC224", "GeographicalRegion_name": "_24809814-4EC6-29D2-B509-7F8BFB646437", "Line_name": "_EBDB5A4A-543C-9025-243E-8CAD24307380"}, "simulation_config": {"power_flow_solver_method": "NR", "duration": 48, "simulation_name": "ieee123", "simulator": "GridLAB-D", "start_time": 1538484951, "run_realtime": true, "simulation_output": {}, "model_creation_config": {"load_scaling_factor": 1.0, "triplex": "y", "encoding": "u", "system_frequency": 60, "voltage_multiplier": 1.0, "power_unit_conversion": 1.0, "unique_names": "y", "schedule_name": "ieeezipload", "z_fraction": 0.0, "i_fraction": 1.0, "p_fraction": 0.0, "randomize_zipload_fractions": false, "use_houses": false}, "simulation_broker_port": 52798, "simulation_broker_location": "127.0.0.1"}, "application_config": {"applications": [{"name": "der_dispatch_app", "config_string": "{\"OPF\": 1, \"run_freq\": 60, \"run_on_host\": false, \"run_realtime\": true, \"stepsize_xp\": 0.2, \"stepsize_xq\": 2, \"coeff_p\": 0.1, \"coeff_q\": 5e-05, \"stepsize_mu\": 500}"}]}, "simulation_request_type": "NEW"}'

 Grid Forecasting (NREL)

Grid Forecasting (NREL)

Gird-Forecasting GridAPPS-D application

Purpose

The application to forecast GHI data

Requirements

	Docker ce version 17.12 or better. You can install this via the docker_install_ubuntu.sh script. (note for mint you will need to modify the file to work with xenial rather than ubuntu generically)

Quick Start

	Please clone the repository https://github.com/GRIDAPPSD/gridappsd-docker (refered to as gridappsd-docker repository) next to this repository (they should both have the same parent folder)

git clone https://github.com/GRIDAPPSD/gridappsd-docker
git clone https://github.com/GRIDAPPSD/Grid-Forecasting

ls -l

drwxrwxr-x 7 osboxes osboxes 4096 Sep 4 14:56 gridappsd-docker
drwxrwxr-x 5 osboxes osboxes 4096 Sep 4 19:06 Grid-Forecasting

Creating the sample-app application container

	From the command line execute the following commands to build the sample-app container

osboxes@osboxes> cd Grid-Forecasting
osboxes@osboxes> docker build --network=host -t grid-forecasting-app .

	Add the following to the gridappsd-docker/docker-compose.yml file
Add 9003 to the ports in the docker-compose.yml allows for data to be sent to the bokeh streaming tool.

 grid_forecasting:
 image: grid-forecasting-app
 ports:
 - 9003:9003
 environment:
 GRIDAPPSD_URI: tcp://gridappsd:61613
 depends_on:
 - gridappsd
 volumes:
 - $HOME/git/adms/Grid-Forecasting-Public:/usr/src/gridappsd-grid-forecasting

	Run the docker application

osboxes@osboxes> cd gridappsd-docker
osboxes@osboxes> ./run.sh

you will now be inside the container, the following starts gridappsd

gridappsd@f4ede7dacb7d:/gridappsd$./run-gridappsd.sh

Next to start the application through the viz follow the directions here: https://gridappsd.readthedocs.io/en/latest/using_gridappsd/index.html#start-gridapps-d-platform

 GridAPPS-D DNP3 Service

GridAPPS-D DNP3 Service

GridAPPS-D DNP3 service is an application service to integrate GridAPPS-D
and a Distrbuted Newtork Protocol(DNP3)[1] based commercial product that
allows operation, monitoring, analysis, restoration, and optimization of
network operations to enable data exchange bewteen the applications. The
DNP3 data exchange interface translates Common Information Model (CIM)
standards data within GridAPPS-D to DNP3 packets and vice-versa to communicate
with the DNP3 based software.Likewise, the service uses the existing GridAPPS-D
platform to translate DNP3 data received from SurvalentONE. The use of GridAPPS-D
made the development easier because of its standardized programming interface
that unifies data integration.

Integration Architecture

This application is implemented as an application service consisting
of python modules. DNP3 is a robust, efficient and interoperable protocol.
Its compatibility with other protocols has made this integration easier.
The integration is shown as a Master and Outstation link communication as
shown in the figure below.

[image: GridAPPS-D_DNP3IntegrationArchitecture]

Figure 1: Integration architecture

	The commercial tool used here is SurvalentONE[2], a DNP3 based SCADA system. The SurvalentONE SCADA system was configured as per the manuals provided by the Survalent Company. The Master server configuration includes creating a Station, Communication Link, Intelligent Electronic Device(IED) . The name and description of CIM measurement points of an IEEE model is added to a template (an excel sheet) containing all the DNP3 related metadata such as predefined datatypes, groups, variation. The template is created using a template maker provided by Survalent.Then the template is loaded in the Master IED of the Master server.

	Once this configuration is done and the DNP3 application service is created,start the service by creating a simulation request. Since the service is added to gridapps container, it gets started as soon as the gridappsd service is started. A model dictionary file(CIM measurements) is generated for each simulation ID when a simulation request for a specific model is sent to the simulator(GridLAB-D). The simulation output from the simulator running under GridAPPS-D is received on the simulation output topic by the Message Bus.

	The DNP3 service at the Outstation and also the Communication Line at the Master Server on startup initiate a connection request from the Master, to the IP address of the Outstation at port 20000. In our case, the Outstation listens on port 20000. The DNP3 points created from the CIM model dictionary file are loaded by the DNP3 service in the Outstation database with the datatype, attribute,

description etc. fields. The Master polls the Outstation every 60 seconds to update the realtime data. The service translates model dictionary data into DNP3 points as JSON structures.An example of a JSON packet loaded in the Outstation database and
sent to the Master is shown below.

{
 "attribute": "Switch.open",
 "data_type": "DO",
 "description":"Name:671692,ConductingEquipment_type:LoadBreakSwitchPhase:B,controlAttribute:Switch.open",
 "group": 12,
 "index": 14,
 "measurement_id": "_56495819-9E14-DFEC-CC01-67526BBC9987",
 "name": "564958199E14DFECCC0167526BBC9987",
 "value": "0",
 "variation": 1
}

	The datatype, group and variation of the points are shown in the Table below.

Datatype Group Variation Examples Control/Status Sent From
-------------- ------ ---------- ---------------------- ----------------- ------------
Analog Output 42 3 Solar Panels, Capacitors, Regulators Control(Update set points) Master to Outstation
Analog Input 30 1 AC Line segment Measurement values Outstation to Master
Digital Output 12 1 Switches,reclosers Control, Enable, Disable Master to Outstation
Digital Input 1 2 Breakers Status Outstation to Master

	The on_message function in the service code keeps on updating the real-time

values for all the DNP3 points in Master server. The status and amgnitude values
updates can be seen in the User Interfaces(Point viewers) provided by Survalent.

	SurvalentONE SCADA has the capability of controlling the points/measurements.

The output commands are generated using the point viewers’ user interface.
For example, a switch can be turned ON/OFF by selecting the control option
manually. Similarly, analog values the AC Line segment can also be modified.
The control points can be chosen from the options in the telemetry of the points.
For a binary point five different inputs can be sent. The control inputs are
sent in the form of OpenDNP3 Control relay Output Block commands to the
Outstation and translated to CIM difference messages, sent back to FNCS bridge
and then to the simulator. OpenDNP3 is an implementation of the DNP3 communication
in the form of a library which provides C++ programming APIs[3]. The analog
points can also be modified in a similar way. The values can be set and sent as
an OpenDNP3 AnalogOutputInt16 command. The command has the value and status as input
to the Outstation.

Results

The integration was tested using a 13-bus system. The JSON stored in Oustation
database as shown in the example above is created for all the CIM measurement
values in the dictionary file. An example of logs from Outstation at service
start-up is shown below.

Adding Point: PointDefinition 00730ee504e148bf917fe47d5be16e6f (30.1, index=0,type=Analog Input)
Recording DNP3 Analog measurement, index=88,value=564.143691452854
Recording DNP3 Binary measurement, index=10,value=True
Recording DNP3 Binary measurement, index=13,value=True

The control input from Master by sending a PULSE_OFF command for a switch which
is an OpenDNP3 command sent from Master to Outstation as shown below.

cmdtype=Operate,command=<pydnp3.opendnp3.ControlRelayOutputBlock object at
0x7fd1f69527d8>,index=4,optype=OperateType.SELECT_BEFORE_OPERATE

Received DNP3 Point value ControlCode.PULSE_OFF (6ed7855451e84bc79db2c810d07509dd, 12.1.4, Operate)
command_code=CommandStatus.SUCCESS,command_code=ControlCode.PULSE_OFF,command_ontime=0

The above command was sent back by the GridAPPS-D service in the form of a CIM difference message
to the simulation input topic as shown below.The forward_differences value is the current value/status
and reverse_differences value contains the older value/status of the switch.

{ "command":"update",
 "input":{
 "simulation_id":"854814554",
 "message":{ "timestamp":1568058139,
 "difference_mrid":"8be2c7a6-7cef-4e0e-af91-4f5eff37cf90",
 "reverse_differences":[
 {
 "object":"_56495819-9E14-DFEC-CC01-67526BBC9987",
 "attribute":"Switch.open",
 "value":1
 }],
 "forward_differences":[
 {
 "object":"_56495819-9E14-DFEC-CC01-67526BBC9987",
 "attribute":"Switch.open",
 "value":0 }]
}}}

This received CIM message was processed and the below plot shows the state of the switch at Viz.

[image: switch1]

References

[1] G. R. Clarke, D. Reynders, and E. Wright, Practical modern SCADA protocols: DNP3, 60870.5 and related systems. London: Elsevier, 2008.

[2] Survalent Technology Corporation. “Survalent.”. https://www.survalent.com (accessed: Aug 2019).

[3] Automatak. “opendnp3”. https://dnp3.github.io/ (accessed: June 2019).

 GridAPPS-D Sensor Simulator Service

GridAPPS-D Sensor Simulator Service

The GridAPPSD’s Sensor Simulator simulates real devices based upon the magnitude of “prestine” simulated values. This
service has been specifically designed to work within the gridappsd platform container. The GridAPPSD platform will
start the service when it is specified as a dependency of an application or when a service configuration is specified
within the GridAPPSD Visualization [https://gridappsd.readthedocs.io/en/latest/using_gridappsd/index.html]. The image
below shows a portion of the configuration options available through the service configuration panel.

[image: _static/sensor-simulator-service-configuration.png]

Python Application Usage

The python application using this service should require gridappsd-sensor-simulator as a requirement. In addition,
the following python code shows how to get the correct topic for the service.

Service Configuration

The sensor-config in the above image shows an example of how to configure a portion of the system to have sensor output.
Each mrid (_99db0dc7-ccda-4ed5-a772-a7db362e9818) will be monitored by this service and either use the default values
or use the specified values during the service runtime.

{
 "_99db0dc7-ccda-4ed5-a772-a7db362e9818": {
 "nominal-value": 100,
 "perunit-confidence-band": 0.01,
 "aggregation-interval": 30,
 "perunit-drop-rate": 0.01
 },
 "_ee65ee31-a900-4f98-bf57-e752be924c4d":{},
 "_f2673c22-654b-452a-8297-45dae11b1e14": {}
}

The other options for the service are:

	default-perunit-confidence-band

	default-aggregation-interval

	default-perunit-drop-rate

	passthrough-if-not-specified

These options will be used when not specified within the sensor-config block.

Note

Currently the nominal-value is not looked up from the database. At this time services aren’t able to tell
the platform when they are “ready”. This will be implemented in the near future and then all of the nominal-values
will be queried from the database.

Request Example

The following is a full request example for use within the context of the
main GridAPPSD api [https://gridappsd.readthedocs.io/en/master/using_gridappsd/index.html#id5]. This example uses
the 123 node system with 3 sensors simulated. Also for this example those are the only measurements that will be
published to the output sensor output topic.

{
 "power_system_config": {
 "GeographicalRegion_name": "_73C512BD-7249-4F50-50DA-D93849B89C43",
 "SubGeographicalRegion_name": "_1CD7D2EE-3C91-3248-5662-A43EFEFAC224",
 "Line_name": "_C1C3E687-6FFD-C753-582B-632A27E28507"
 },
 "application_config": {
 "applications": []
 },
 "simulation_config": {
 "start_time": "1570041113",
 "duration": "120",
 "simulator": "GridLAB-D",
 "timestep_frequency": "1000",
 "timestep_increment": "1000",
 "run_realtime": false,
 "simulation_name": "ieee123",
 "power_flow_solver_method": "NR",
 "model_creation_config": {
 "load_scaling_factor": "1",
 "schedule_name": "ieeezipload",
 "z_fraction": "0",
 "i_fraction": "1",
 "p_fraction": "0",
 "randomize_zipload_fractions": false,
 "use_houses": false
 }
 },
 "test_config": {
 "events": [],
 "appId": ""
 },
 "service_configs": [{
 "id": "gridappsd-sensor-simulator",
 "user_options": {
 "sensors-config": {
 "_99db0dc7-ccda-4ed5-a772-a7db362e9818": {
 "nominal-value": 100,
 "perunit-confidence-band": 0.02,
 "aggregation-interval": 5,
 "perunit-drop-rate": 0.01
 },
 "_ee65ee31-a900-4f98-bf57-e752be924c4d": {},
 "_f2673c22-654b-452a-8297-45dae11b1e14": {}
 },
 "random-seed": 0,
 "default-aggregation-interval": 30,
 "passthrough-if-not-specified": false,
 "default-perunit-confidence-band": 0.01,
 "default-perunit-drop-rate": 0.05
 }
 }]
}

Further information about the GridAPPSD [https://gridappsd.readthedocs.org/] platform can be found at
https://gridappsd.readthedocs.org.

 GridAPPS-D Voltage Violation Service

GridAPPS-D Voltage Violation Service

Purpose

This is a GridAPPS-D service that calculates and publishes voltage voilations during a simulation.
Voltage violations are published every 15 seconds by default.

Topics

	Subscribes to simulation output topic /topic/goss.gridappsd.simulation.output.[simulation_id]

	Publishes on topic /topic/goss.gridappsd.simulation.voltage_violation.[simulation_id].output

Message Structure

	Simulation output message structure is available here: https://gridappsd.readthedocs.io/en/master/using_gridappsd/index.html#subscribe-to-simulation-output

	Voltage violation service publishes a JSON message with measurement MRIDs and their per unit voltage value. For example,

{	
	"_00730ee5-04e1-48bf-917f-e47d5be16e6f": 1.07,
	"_078cfc25-8a2e-4f34-8631-0346abe2214d": 1.06,
	"_40df103f-b458-4c15-a2eb-ffe7d029ef65": 1.06,
	"_51fe8d20-a89e-497f-8c4b-d5bd654449bf": 1.08
}

 GridAPPS-D State Estimator Service

GridAPPS-D State Estimator Service

Purpose

The state estimator service will produce and output the best available system state from measurements for use by other applications.

State estimator service layout

The following is the structure of the state estimator:

.
├── README.md
├── LICENSE
└── state-estimator
 ├── include
 ├── src
 ├── bin
 ├── obj
 ├── Makefile
 └── state-estimator.config
└───(Prerequisite libraries--SuiteSparse, ActiveMQ-CPP, Json)

Prerequisites

	Docker ce version 17.12 or newer is required. You can install this via the docker_install_ubuntu.sh script in the gridappsd-docker repository described in the next step. (note for mint you will need to modify the file to work with xenial rather than ubuntu generically)

	Clone the repository https://github.com/GRIDAPPSD/gridappsd-docker (referred to as gridappsd-docker repository).

~/git
└── gridappsd-docker

	To run the gridappsd-docker platform, follow the instructions provided at https://github.com/GRIDAPPSD/gridappsd-docker/README.md.

	To configure and run a simulation under the platform, follow the instructions provided at https://gridappsd.readthedocs.io/en/master/using_gridappsd.

	The state estimator is distributed pre-built under the gridappsd-docker repository, but you may instead build the state estimator from source code from its own repository if you wish to modify it, run a different branch than master, or otherwise run it outside the gridappsd-docker container.

	If you wish to run the state estimator provided with gridappsd-docker, follow the instructions in the following section, Running state estimator from the gridappsd-docker container.

	Alternatively, to build the state estimator from source code and then run that version from the command line, skip to the section Building state estimator below.

Running state estimator from the gridappsd-docker container

	Configure the simulation from the GRIDAPPSD platform web browser visualization.

	Click on the “Service Configuration” tab and then click on the checkbox under the gridappsd-state-estimator section of the configuration user interface to specify that state estimator should be started with the simulation.

	Click on the “Submit” button and then the play button to start the simulation.

	The state estimator will process running simulation measurements producing state estimate messages for other applications.

	The gridappsd-state-plotter application can be used to plot state estimator output as described at https://github.com/GRIDAPPSD/gridappsd-state-plotter.

The remainder of these instructions apply only when building the state estimator from source code and running that build from the command line.

Building state estimator

	Clone the repository https://github.com/GRIDAPPSD/gridappsd-state-estimator next to the gridappsd-docker repository (they should both have the same parent folder, assumed to be ~/git in docker-compose.yml)

~/git
├── gridappsd-docker
└── gridappsd-state-estimator

	Then the following two repositories should be cloned under the top-level gridappsd-state-estimator directory of the repository cloned above

	- https://github.com/GRIDAPPSD/SuiteSparse
	- https://github.com/GRIDAPPSD/json

	The ActiveMQ C++ client library, ActiveMQ-CPP, should be downloaded from the URL below as a Unix source code distrubtion. Both the 3.9.4 and 3.9.5 releases have been successfully used with state estimator. The tar.gz or tar.bz2 distribution should be extracted under the gridappsd-state-estimator directory, the same location as the SuiteSparse and json repositories.

 - https://activemq.apache.org/components/cms/download

	Building prerequisite libraries requires some other packages to be installed first. The following apt-get install commands should install those packages if they are not already installed:

sudo apt-get install cmake
sudo apt-get install m4
sudo apt-get install liblapack-dev libblas-dev
sudo apt-get install libapr1 libapr1-dev
sudo apt-get install libssl-dev

	From the gridappsd-state-estimator directory, run the following commands to build the prerequisite libraries and then the state-estimator executable:

cd activemq-cpp-library-*
./configure
make
sudo make install

cd ../SuiteSparse
make LAPACK=-llapack BLAS=-lblas

cd ../state-estimator
make

	The executable application will be placed in bin/state-estimator. The Json distribution consists entirely of include files and therefore is not compiled separately from the application using it.

Running state estimator from the command line

	Edit the run-se.sh script in the state-estimator subdirectory of the top-level gridappsd-state-estimator repository, uncomment the appropriate SIMREQ variable for the model being run based on the comment at the end of each SIMREQ line denoting the corresponding model, and save changes.

	Configure and start the simulation from the GRIDAPPSD platform web browser visualization, click on the “Simulation ID” value in the upper left corner of the simulation diagram to copy the value to the clipboard.

	Invoke the script “./run-se.sh” from the command line with the Simulation ID value pasted from the clipboard as the command line argument to the script.

	The state estimator will process running simulation measurements producing state estimate messages for other applications along with diagnostic log output to the terminal.

	The gridappsd-state-plotter application can be used to plot state estimator output as described at https://github.com/GRIDAPPSD/gridappsd-state-plotter.

 GridAPPS-D Alarm Service

GridAPPS-D Alarm Service

This service publishes alarms.

 Index

Index

 gov.pnnl.gridlabd.cim

gov.pnnl.gridlabd.cim

This Java package converts CIM RDF to GridLAB-D format.

	CDPSM_to_GLM

	CDPSM_to_GLM.GldNode

	CDPSM_to_GLM.SpacingCount

	SPARQLcimTest

 <no title>

 CDPSM_to_GLM.GldNode

CDPSM_to_GLM.GldNode

Fields

bDelta

bSecondary

bSwing

name

nomvln

pa_i

pa_p

pa_z

pb_i

pb_p

pb_z

pc_i

pc_p

pc_z

phases

qa_i

qa_p

qa_z

qb_i

qb_p

qb_z

qc_i

qc_p

qc_z

Constructors

GldNode

Methods

AddPhases

ApplyZIP

GetPhases

HasLoad

RescaleLoad

 CDPSM_to_GLM.SpacingCount

CDPSM_to_GLM.SpacingCount

Constructors

SpacingCount

Methods

getNumConductors

getNumPhases

 CDPSM_to_GLM

CDPSM_to_GLM

Fields

baseURI

mapNodes

mapSpacings

neg120

nsCIM

nsRDF

pos120

ptBaseNomV

ptEqBaseV

ptEquip

ptLevBaseV

Methods

AccumulateLoads

Bus_ShuntPhases

CFormat

Count_Phases

FindBaseVoltage

FindConductorAmps

FirstPhase

GLDCapMode

GLD_ID

GLD_Name

GetACLineParameters

GetBusName

GetBusPositionString

GetCableData

GetCapControlData

GetEquipmentType

GetGldTransformerConnection

GetImpedanceMatrix

GetLineSpacing

GetMatIdx

GetPowerTransformerData

GetPowerTransformerTanks

GetPropValue

GetRegulatorData

GetSequenceLineConfigurations

GetWdgConnection

GetWireData

GetXfmrCode

GldPrefixedNodeName

MergePhases

Phase_Kind_String

Phase_String

SafeBoolean

SafeDouble

SafeInt

SafePhasesX

SafeProperty

SafeRegulatingMode

SafeResName

SafeResourceLookup

Shunt_Delta

WirePhases

main

 SPARQLcimTest

SPARQLcimTest

Fields

baseURI

nsCIM

nsRDF

Methods

GLD_Name

main

 Start a Simulation

Start a Simulation

	Open your browser to http://localhost:8080/ and click the menu button.

[image: menu]

	Choose Simulations from the menu.

[image: simulations]

Change Configurations

	Change the Power System Configuration, Simulation Configuration, Application Configuration, and Test Configuration as follows:

[image: psc]

[image: sc]

[image: ac]

	Communication outage and fault events can be added using the Test Configuration page as shown below. Event can be added using radio button or upload option.

[image: tc]

	Click the submit button to save all the configurations.

Adding an event

	Since we are running the restoration application, a fault event is required to trigger the application. Before proceeding, an event file is required. There are several ways to add event in the test feeder. Here, we use the upload option and use the following JSON file.

{
 "commandEvents": [
 {
 "message": {
 "forward_differences": [
 {
 "object": "_24A93B95-B674-4451-8670-35391D5F51F0",
 "attribute": "Switch.open",
 "value": 1
 }
],
 "reverse_differences": [
 {
 "object": "_24A93B95-B674-4451-8670-35391D5F51F0",
 "attribute": "Switch.open",
 "value": 0
 }
]
 },
 "event_type": "ScheduledCommandEvent",
 "occuredDateTime": "2013-07-14 08:02:00",
 "stopDateTime": "2013-07-14 09:00:00"
 }
]
}

	This event opens a switch (LN0895780_SW) in the feeder at time 2013-07-14 08:02:00 and remains open until 09:00:00. Please adjust the Start time in Simulation Configuration based on occuredDateTime of the event such that event occurs after the simulation has started.

Running the platform

	After few seconds, the test-feeder will load. In the meantime, use “Edit plots” to add power, voltage and tap of different components to visualize as the simulation progress.

	Click on the triangle to start the simulation. Once you get the Simulation_ID, use it to run the application in terminal. See the python command here [https://gridappsd-restoration.readthedocs.io/en/latest/system_confguration/index.html#executing-the-application-container].

	Note that the WSU-Restoration application gets triggered only when the fault event is added in the test case. During normal operation, application stays quite. The occurrence of the event can be verified on the Alarm tab. Once the event has occured, the applicatin starts and runs the optimization problem to generate the candidate switches for optimal circuit reconfiguration. The candidate switches are toggled and the system is restored.

[image: viz]

 Short-Term Grid Forecasting

Short-Term Grid Forecasting

Objectives

Today’s distribution systems have been experiencing a significant transformation due to an increasing amount of smart electric loads and distributed energy resources, such as electric vehicles, smart home appliances, rooftop photovoltaic systems, and energy storage. As more flexible resources integrated into distribution systems, coordination among various flexible resources plays an important role in distribution system operations to optimally manage distribution assets and flexible resources. On the other hand, with the increasing penetration of variable energy resources, it is crucial for system operators to not only monitor and estimate the current grid conditions but also forecast the future system status, which allows for proactive dispatch of controllable resources and better preparation for ever-changing grid conditions. This application develops predictive locational marginal prices (DLMPs) to proactively manage the distribution assets and flexible resources based on forecasted grid conditions. This application enables the distribution system operators to optimally incentivize individual resources to achieve system-level control objectives, such as minimizing total generation cost and optimizing the voltage profile; and it paves the way to a fully functional distribution market with granular prices that reflect the time- and location-specific values of individual participants.

Design

This application develops a high-resolution, short-term load forecasting method to accurately predict the power consumption of individual customers in distribution systems. Using historical load measurements as inputs, it trains a support vector regression model to forecast the future load. Based on the forecasted load in the short-term future, this application develops a three-phase AC optimal power flow problem to determine the predictive DLMPs in distribution systems. By accurately modeling the losses and the imbalances of distribution networks, it provides time- and location-specific pricing of individual resources.

[image: nrel_OPF_image0]

Operating/Running

The application was built using Python 3.6. It will be run from the platform GUI.

References

[1] H. Jiang, Y. Zhang, E. Muljadi, J. J. Zhang, and D. W. Gao, “A Short-Term and High-Resolution Distribution System Load Forecasting Approach Using Support Vector Regression with Hybrid Parameters Optimization,” in IEEE Transactions on Smart Grid, vol. 9, no. 4, pp. 3341-3350, July 2018.
[2] R. Yang and Y. Zhang, “Three-Phase AC Optimal Power Flow Based Distribution Locational Marginal Price,” IEEE Innovative Smart Grid Technologies, Arlington, VA, Apr. 2017.

 Distribution Optimal Power Flow for Real-Time Setpoint Dispatch

Distribution Optimal Power Flow for Real-Time Setpoint Dispatch

Objectives

This application is designed to address the problem of optimizing the
operation of aggregations of heterogeneous energy resources connected to
a distribution system. We will focus on real=time optimization method
and the power setting points of the distributed energy resources (DERs)
will be updated on a second or subsecond timescale to maximize the
operational objectives while coping with the variability of ambient
conditions and noncontrollable energy assets [1]. In order to avoid
massive measurements and overcome the limitation caused by model
inaccuracy, this application will be implemented in a distributed
manner, and only local measurements and a feedback signal from the
substation aggregator are needed to determine the optimal setpoints for
each controlled DER unit.

[image: nrel_OPF_image0]

Figure 1 The conceptual framework of distribution OPF for real=time
setpoint dispatch.

Figure 1 shows the conceptual framework of this application, and this
application is targeting at TRL 3.

Design

Figure 2 describes the overall work flow of the application.
Distribution OPF algorithm requires real=time measurements, distribution
system model and power flow results, which will be obtained from
GridAPPS=D platform through GOSS/FNCS message bus. The optimization
problem formulation can be constructed using user=defined cost functions
for different controllable devices. Finally the optimal setpoints for
controllable devices will be solved based on the feedback information
from system measurements. These setpoints will be sent back to GridLab=D
grid model to update DER operations. Such a closed=loop control forms
the control iteration for the studied time point, and new setpoints for
the following time points will be determined in the same manner using
the updated model and measurements.

[image: nrel_OPF_image1]

Figure 2 The workflow of real=time setpoint dispatch application and
its interaction with GridApps=D.

Data requirements

The DER application requires p and q values from the inverters attached to PVs, loads, and capacitors.
The DER application also requires setting the p and q values of inverters attached to PVs.

Testing and Validation

Evaluation metrics of this application:

	Real/reactive power at the substation

	System loss

	Voltages across the entire distribution grid: voltage magnitude,
voltage fluctuation, voltage unbalance.

	Legacy control device operations: total control actions of all
capacitors and regulators

Scenarios:

	Optimal Dispatch for Distributed PV Systems

	Optimal Dispatch for Distributed PV + Energy Storage

	Etc. (will be added when implementing the application)

Operating/Running

This application will be developed using Python.

References

[1] E. Dall’Anese, A. Bernstein, and A. Simonetto, “Feedback=based
Projected=gradient Method for Real=time Optimization of Aggregations
of Energy Resources,” IEEE Global Conference on Signal and Information
Processing (GlobalSIP), Montreal, Canada, Nov. 2017.

 Solar Forecasting Application

Solar Forecasting Application

Objectives

When observations of solar radiation are limited,
persistence and smart persistence solar forecasting
techniques are frequently the easiest and most
effective methods to use. Often though, these techniques
suffer from having no information about current cloud properties,
which could improve the forecast. At NREL, a
Physics-based Smart Persistence model (PSPI)
[1] was created for intra-hour solar forecasting using only
GHI observations and a cloud retrieval technique.
This model breaks down common solar radiation components
such as GHI and solar zenith angle (SZA) using a
two-stream approximation [2] and methods used in [3]
to forecast future GHI, cloud fraction, and cloud albedo. With
this information, this technique can then be used to forecast
solar power (still in development).
Figure 1 below shows the conceptual framework for PSPI.

[image: nrel_solar_image0]
Figure 1 Conceptual framework for PSPI. PSPI breaks up the GHI and solar zenith angle (SZA) into cloud fraction and cloud albedo components.

Design

PSPI is designed to operate only using GHI observations.
Other atmospheric parameters, such as pressure and temperature,
can be ingested into the application as well if those
observations exist. Currently, site-specific annual averages of
these parameters are used. Other parameters, such as altitude of
the site of interest, need to be adjusted prior to running the
application. Whatever atmospheric variables are available via the
GridAPPS-D platform, they can be ingested into the PSPI based on
the user’s needs (still in development). Once all desired parameters
are chosen and the application is run, intra-hour GHI forecasts
can be made (5 to 60-minute forecasts) as frequently as observations
arrive (usually minutely).

Testing and Validation

PSPI was tested and validated using 10 years of GHI data at the
Solar Radiation Research Laboratory (SRRL) at NREL, in Golden, Colorado.
More information about this process can be found in [1].

Operating/Running

The application was built using Python 3.6. It will be run from the platform GUI.

References

[1] Kumler, A., Xie, Y., & Zhang, Y. (2019). A Physics-based Smart Persistence model for Intra-hour forecasting of solar radiation (PSPI) using GHI measurements and a cloud retrieval technique. Solar Energy, 177, 494-500.

[2] Sagan, C., & Pollack, J. B. (1967). Anisotropic nonconservative scattering and the clouds of Venus. Journal of Geophysical Research, 72(2), 469-477.

[3] Xie, Y., & Liu, Y. (2013). A new approach for simultaneously retrieving cloud albedo and cloud fraction from surface-based shortwave radiation measurements. Environmental Research Letters, 8(4), 044023.

 Model Validation Application

Model Validation Application

The state estimator basically attempts to fit measured data to a power
flow model, usually assuming that the model is correct. However, a model
attribute (e.g. line impedance) could also be estimated by minimizing
its error residual in the state estimator’s power flow solution. This
process works best when applied to just one or a few suspect attributes,
and/or when an archive is available to provide enough redundant
measurements. The Model Validation Application will use these state
estimator features off-line to help identify and correct the following
types of model errors:

	Unknown or incorrect service transformer sizes

	Unknown or incorrect secondary circuit lengths

	Incorrect phase identification of single-phase components

	Phase wiring errors in line segments and switches

	Transformer connection errors, especially reversed primary and
secondary

	Primary conductor sizes that don’t decrease monotonically with
distance from the source

	Missing regulator and capacitor control settings (i.e. supply
defaults from heuristic rules)

	More than one of these on the same pole: recloser, line regulator,
capacitor

	Substation transformer impedance and turns ratio

These types of errors often appear upon the initial model import from a
geographic information system (GIS), or in periodic model updates from
GIS. Other error types may be added later. Many utilities do not have
their secondary circuits modeled at all, but this has an important
impact on AMI data. The service transformers and secondary circuits
insert significant impedance between AMI meters and the primary circuit,
where most of the other sensors are installed. Therefore, the first two
items will require AMI data, and also enable its more effective use.

As shown in Figure 1, the Model Validator integrates with GridAPPS-D as
a hosted application on the GOSS bus. Internally, it will use some of
the same algorithms as the State Estimator and may share some code or
binary files, but this is an implementation detail. It will need to
access an archive of state-estimated VIPQS data, which may include AMI
data. It will also use or incorporate an off-line power flow model, not
the same one running in the GridAPPS-D distribution simulator. This may
be EPRI’s OpenDSS simulator [1]; compared to GridLAB-D, it’s more
tolerant of model errors and provides more diagnostic information about
model errors.

[image: mv_image1]

Figure 1: The Model Validator works with an archive from the state
estimator, and an off-line power flow model.

Design Objectives

The model validator will detect and attempt to correct unreasonable
component interconnections and network parameters. The model validation
application will be implemented in Python.

Use Cases

	Valid transformer size and orientation (Utility): orientation is not
captured explicitly in their GIS system.

	Discover secondary line impedance parameters (Utility) conductor type
and line length are currently based on generic assumptions.

	Sanity check or estimate transformer size and impedance.

	Verify that the nominal voltage of nodes matches the base voltage of
the segment: generally the winding voltage of the upstream
transformer or swing bus voltage.

	Sanity check conductor sizes and line current ratings.

	Validate and fill in regulator and capacitor control settings.

	Check phase continuity (GridLAB-D may not model phase
discontinuities)

Inputs

The model validator will have access to the CIM database and archived
data from the state estimator.

Outputs

The model validator will one or both of the following outputs:

	Model status: log file or GUI pipe for identified issues.

	Model correction: CIM updates to correct identified issues.

Testing and Validation

Evaluation metrics

	Ability to detect known issues.

Scenarios

	Utility merger: models with different format may be interpreted
differently, creating issues a CIM model.

	Data entry issue: model update does not match upgrade performed in
the field

Operating/Running

The model validator script will execute once when called by the
platform.

At initialization, a configuration file will be read for:

	Mode (status, quiet, verbose; see outputs section)

	Selectable validation items (use cases)

References

[1] R. C. Dugan and T. E. McDermott, “An open source platform for collaborating on smart grid research,” in Power and Energy Society General Meeting, 2011 IEEE, 2011, pp. 1-7.

 State Estimator Service

State Estimator Service

Given a perfect and complete set of voltage magnitude and angle
measurements, along with a detailed and accurate power system model, one
could calculate the real power, or any other electrical variable of
interest, anywhere in the system. In practice, measurements have errors,
time delays, and may even be missing. State estimation refers to the
process of minimizing the errors and filling in gaps [1]. One state
estimation method is called “weighted least squares”, and it’s analogous
to drawing the best-fit line through a set of scattered points. Other
methods may perform better [2]. Also, on distribution systems, it may be
better to estimate branch currents instead of node voltages, but the
principle is the same. In GridAPPS-D, the visualizations and
applications ought to use the best available state estimator outputs,
instead of raw SCADA values, for both accuracy and consistency.
Therefore, the state estimator is not an application but a service in
GridAPPS-D, sitting between emulated SCADA and the GOSS bus.

[image: image0]

Figure 1: The state estimator processes noisy and incomplete
measurements, then posting estimated voltage (V), current (I), real
power (P), reactive power (Q) and switch status (S) values onto the
GridAPPS-D message / data bus.

In Figure 1, the power system model (upper left) will include a limited
number of sensors, corresponding to actual voltage and current
transformers, line post sensors, wireless sensors, etc. In some
scenarios, smart meters can also be sensors. Each such sensor will have
different performance characteristics (e.g. precision, accuracy,
sampling rate). Distribution systems typically do not have enough
sensors to make the system observable, so there will be measurement gaps
in the topology. The state estimator might fill these gaps with
interpolation and graph-tracing methods on the power system model.

The supervisory control and data acquisition (SCADA) system in Figure 1
introduces more errors and failure points. Eventually, GridAPPS-D may
simulate these impacts by federating ns-3 as a co-simulator. Until then,
a placeholder module could be used to insert variable errors, time
delays and dropouts in each measurement, whether due to sensor
characteristics or the communication system. The output represents data
as it would come into an operations center, and feeds the state
estimator. Internally, the data flows between simulator, SCADA and state
estimator might be implemented with FNCS, but this is an implementation
detail. The state estimator will provide two outputs to the GOSS bus
used by all GridAPPS-D applications:

	At a time step configured by the platform, publish the best-estimate
VIPQS values wherever sensors actually exist in the model, with
quality attributes that still have to be established. Sensor
locations delineate circuit segments, and note that all VIPQS values
will be estimated at the boundaries, even if the sensor measures only
V or I, for example.

	Upon request by another application or service, publish the estimated
VIPQS values for all nodes and components in the model, even at
locations where no sensors exist. A variant is to publish the
estimates only for selected nodes and components.

As indicated in Figure 1, other applications need to obtain estimated
VIPQS values from the GOSS bus. Switch open/close states are a special
case; they might be considered known values, but in practice the switch
state is a measurement, which could lead to topology errors in the
model. For GridAPPS-D, switch state estimates need to be a point of
emphasis. Given that most distribution systems lack redundant
measurements, It would be possible for an application to query these
VIPQS values directly from the simulator or SCADA, bypassing the state
estimator, but this is “cheating” in most situations. However, in the
application development process, idealized VIPQS values could be
obtained through a combination of two methods:

	Add more sensors to the power system model

	Set the sensor and channel errors to zero

Because the sensor outputs in GridAPPS-D come from a power flow solution
that enforces Kirchhoff’s Laws, the state estimator will produce ideally
accurate values whenever the sensor and channel errors have been
specified to be zero. The state estimator may still exhibit
interpolation errors between sensor locations, but that is readily
mitigated for testing purposes by adding more sensors.

With reference to RC1, the visualization and VVO applications should now
subscribe to VIPQS values from the state estimator, not from the
distribution simulator. They may also use or display quality metrics on
the estimated values.

Design Objectives

State estimation is widely used in transmission system operations but is
less common in distribution system operations due to a relatively
limited value in traditional distribution systems, additional
computational complexity, and a lack of sensors. Advanced distribution
management platforms like GridAPPS-D provide access to model and sensor
data that can be leveraged to overcome barriers to adoption and open the
door to distribution system state estimators that are fast and accurate
enough to be useful in utility operations.

A distribution system state estimator computes the most likely state
given a set of present and/or past measurements. The full state of a
distribution system consists of either the full set of complex bus
voltages or the full set of complex branch currents; given the system
model (admittance matrix), the remaining system parameters can be
computed given the full system state.

Use Cases

	Assist power factor optimization: Utility objective is unity
power-factor at the substation.

	Assist voltage optimization (planning): Utility objective is 1 p.u.
voltage at last house primary.

	Real-time state estimation for advanced applications: applications
can access the state estimate at a sufficient resolution to capture
e.g. insolation variation caused by clouds.

Algorithms

State estimation uses system model information to produce an estimate of
the state vector x given a measurement vector z. The measurement vector
is related to the state vector and an error vector by the measurement
function, which may be non-linear.

\[z = h(x) + e\]

Multiple formulations of the distribution system state estimation
problem are possible:

	Node Voltage State Estimation (NVSE): The state vector consists of
node voltage magnitudes and angles for each node in the system (one
reference angle can be eliminated from the state vector). This
formulation of the state estimation problem is general to any
topology and it is the standard for transmission system state
estimation.

	Branch Current State Estimation (BCSE): Radial topology and
assumptions about shunt losses create a linear formulation of the
state estimation problem. The state vector contains branch currents
and, for a fully-constrained problem, requires one state per load,
which can be less than the number of branches in the system.

Different algorithms provide different advantages for distribution
system state estimation. A subset of the state estimation algorithms
below will be used to achieve these goals.

	Weighted Least Squares Estimation (WLSE): a concurrent set of
measurements are used to find a state vector that minimizes the
weighted least squares objective function. The algorithm is
memoryless with respect to previous solutions and measurements should
be synchronized.

	Kalman Filter Estimation (KFE) and Extended Kalman Filter Estimation
(EKFE): The Kalman filter provides a mechanism to consider past
state estimates alongside present measurements. This provides
additional noise rejection and allows asynchronous measurements can
be considered individually. KFE is appropriate for linear BCSE and
EKFE is compatible with nonlinear NVSE.

	Unscented Kalman Filter Estimation (UKFE): The unscented transform
estimates the expected value and variance of the system state by
observing the system outputs for inputs spanning the full
dimensionality of the measurement space. Again, the Kalman filter
provides a mechanism to consider past estimates.

TRL

The state estimator application will provide the capability to estimate
the full system state using asynchronous measurement data. In addition a
model order reduction technique will be implemented to greatly speed up
the state estimation computation and to reduce the dependence on
forecast-based pseudo-measurements. A paper (Reduced-Order State
Estimation for Power Distribution Systems with Sparse Sensing) is
targeted for IEEE Transactions on Power Systems.

Architecture

The state estimation service is being developed in c++. A modern c++
implementation allows the application to adapt to an evolving interface.
The program architecture is shown below.

[image: image1]

Topology Processor: initializes the measurement function and its
Jacobian and determines the size of the measurement vector, the
measurement covariance matrix, and the state vector.

Meter Interface: updates the measurement vector and the measurement
covariance matrix as new measurement data comes available.

State Estimator: performs the state estimation operation according to
the specified algorithm.

Output Interface: formats the state vector and any implicit states as an
output stream.

Inputs

Upon initialization, the topology processor will receive the Y-bus from
the GridLAB-D service and will query contextual information and sensor
locations from the CIM database.

Periodic measurement data, including any forecasts to be used a
pseudo-measurements will be required as inputs.

A “terminate” command from the platform will end the state estimation
process.

Outputs

The output will include the full system state (node voltages and/or
branch currents TBD).

Testing and Validation

Evaluation metrics

	State Error: compare state estimation output to “true” system state.

	Accuracy over baseline: compare state error of state estimator to
state error of a QSTS load-flow model.

	Execution Time

	Bad Sensor Detection (binary)

Scenarios

	Full sensor deployment: verify that the true system state can be
reproduced.

	Sparse sensor deployment: verify that the state estimator performs
better than a QSTS load-flow model.

	Breaker trip: verify that switch state can be detected even when it
is reported incorrectly.

	Bad sensor detection: verify that a sensor that is producing bad data
can be identified.

	Dependent application support: verify that the state estimator can
support e.g. the VVO application.

	Fault: for a radial system, determine the nearest common bus from
multiple emulated customer calls.

Operating/Running

The state estimator will execute the topology processor at
initialization and will enter a stat estimation loop. The state
estimation loop will exit and the process will end upon receiving a
‘terminate’ command from the platform.

At initialization, a configuration file will be read for:

	State estimation mode (state vector and algorithm) selection

	Normalized residual threshold for bad measurement / sensor detection

References

[1] T. E. McDermott, “Grid Monitoring and State Estimation,” in Smart Grid Handbook, ed: John Wiley & Sons, Ltd, 2016.

[2] A. Abur and A. Gómez Expósito, Power system state estimation : theory and implementation. New York, NY: Marcel Dekker, 2004.

[3] M. E. Baran and A. W. Kelley, “A branch-current-based state estimation method for distribution systems,” in IEEE Transactions on Power Systems, vol. 10, no. 1, pp. 483-491, Feb 1995.

[4] Z. Jia, J. Chen and Y. Liao, “State estimation in distribution system considering effects of AMI data,” 2013 Proceedings of IEEE Southeastcon, Jacksonville, FL, 2013, pp. 1-6.

[5] S. C. Huang, C. N. Lu and Y. L. Lo, “Evaluation of AMI and SCADA Data Synergy for Distribution Feeder Modeling,” in IEEE Transactions on Smart Grid, vol. 6, no. 4, pp. 1639-1647, July 2015.

[6] M. Kettner; M. Paolone, “Sequential Discrete Kalman Filter for Real-Time State Estimation in Power Distribution Systems: Theory and Implementation,” in IEEE Transactions on Instrumentation and Measurement, vol.PP, no.99, pp. 1-13, Jun. 2017.

[7] G. Valverde and V. Terzija, “Unscented kalman filter for power system dynamic state estimation,” in IET Generation, Transmission & Distribution, vol. 5, no. 1, pp. 29-37, Jan.

 Transactive Systems Application

Transactive Systems Application

Transactive energy is a method of controlling loads and resources on the
distribution system, combining both market and electrical principles
[1]. One reason for including this application in DOE-funded GridAPPS-D
is that PNNL has made several technical contributions and led several
demonstration projects in transactive systems, also funded by DOE [2].

Application structure

This transactive systems application is to be implemented as a
modularized 2-layer 3-level structure, as seen from Figure 3. The layer
decomposition helps the control of various groups, with limited
information flow between different layers. With the predefined functions
in each agent type (Agent A, B, and C) in each level, the existing
transactive system related work can be conveniently integrated into the
application, and the new control features can be added into specific
control function in each type of the agent easily.

[image: TransactiveSystemAppStructure]

Figure 3: The structure of the modularized 2-layer 3-level transactive
system application

The modularized agents opens the door for integrating different control
mechanisms into the application. Users need to consider which level
their control algorithm fits into, and fill in the control function of
the Agent class in that level, without worrying about communications
between the agents. In each level, the same type of the agent may have
various control functions, which help combining benefits of different
control schemes together.

Agent A, B and C will be implemented as VOLTTRON applications. VOLTTRON
is an application platform for distributed sensing and control
applications [3]. With the capability of hardware-in-the-loop (HIL)
testing through VOLTTRON, the transactive systems application will be
tested using the actual devices. A GOSS-VOLTTRON Bridge is to be
implemented, for the communication between GridAPPS-D and the VOLTTRON
agents in the transactive systems application.

Application test cases

The hierarchical control framework introduced in [4] for integrated
coordination between distributed energy resources and demand response
will be implemented into the application. In addition, [4] has not
considered the power losses or power constrains, which will be taken
into consideration in this test case. The two-layer control mechanism,
including the coordination layer and device layer, fits the proposed
structure of the application well. The control in each level will be
implemented into corresponding function in each type of the agent. The
IEEE 123-node test feeder built in GridLAB-D will be used for testing
the application.

CIM extension for the Application

The latest versions of GridAPPS-D has used a reduced-order CIM to
support feeder modeling. With transactive system application included
into GridAPPS-D platform, more objects, such as house air conditioner
and water heater, need to be defined in CIM. Before the definition in
CIM, a simplified version of the house object and water heater object
are to be implemented in GridLAB-D.

References

[1] Gridwise Architecture Council. (2017). Transactive Energy. Available: http://www.gridwiseac.org/about/transactive_energy.aspx

[2] Pacific Northwest National Laboratory. (2017). Transactive Energy Simulation Platform (TESP). Available: http://tesp.readthedocs.io/en/latest/

[3] S. Katipamula, J. Haack, G. Hernandez, B. Akyol, and J. Hagerman, “VOLTTRON: An Open-Source Software Platform of the Future,” IEEE Electrification Magazine, vol. 4, pp. 15-22, 2016.

[4] Di Wu, Jianming Lian, Yannan Sun, Tao Yang, Jacob Hansen, “Hierarchical control framework for integrated coordination between distributed energy resources and demand response,” Electric Power Systems Research, pp. 45-54, May 2017.

 FNCS

FNCS

Overview

FNCS is the co-simulation engine used by GridAPP-D’s simulation manager class to facilitating real-time synchonization and message passing between the GridLAB-D simulation and the GOSS message bus.

Source Code

FNCS is maintained by PNNL. The repository is located at https://github.com/FNCS/fncs. GridAPPS-D is using the latest release of FNCS which is v2.3.2.

FNCS Documentation

The documentation for FNCS is located at https://github.com/FNCS/fncs/wiki.

Building and Installing the Source

Linux

Prerequisites

FNCS requires both the ZeroMQ and CZMQ libraries. For the purposes of the tutorial FNCS and it’s prerequisites will be installed a custom location refered to by $FNCS_INSTALL. All source code is downloaded to the $HOME directory.

download and install ZeroMQ
:~$ wget http://download.zeromq.org/zeromq-3.2.4.tar.gz
if you do not have wget, use
curl -O http://download.zeromq.org/zeromq-3.2.4.tar.gz

unpack zeromq, change to its directory
:~$ tar -xzf zeromq-3.2.4.tar.gz
:~$ cd zeromq-3.2.4

configure, make, and make install
:~/zeromq-3.2.4$./configure --prefix=$FNCS_INSTALL
:~/zeromq-3.2.4$ make
:~/zeromq-3.2.4$ make install

download and install CZMQ
:~/zeromq-3.2.4$ cd $HOME

:~$ wget http://download.zeromq.org/czmq-3.0.0-rc1.tar.gz
if you do not have wget, use
curl -O http://download.zeromq.org/czmq-3.0.0-rc1.tar.gz

unpack czmq, change to its directory
:~$ tar -xzf czmq-3.0.0-rc1.tar.gz
:~$ cd czmq-3.0.0

configure, make, and make install
:~/czmq-3.0.0$./configure --prefix=$FNCS_INSTALL --with-libzmq=$FNCS_INSTALL
:~/czmq-3.0.0$ make
:~/czmq-3.0.0$ make install

Building FNCS

In this tutorial FNCS source code will be downloaded using git to the $HOME directory. The code will be installed at t/FNCShe loacation $FNCS_INSTALL.

download FNCS
:~$ git clone https://github.com/FNCS/fncs.git

change to FNCS directory
:~$ cd fncs

configure, make, and make install
:~/fncs$./configure --prefix=$FNCS_INSTALL --with-zmq=$FNCS_INSTALL
:~/fncs$ make
:~/fncs$ make install

Environment Setup

In order for GridAPPS-D to be able to run FNCS and for GridLAB-D to be built with FNCS The following environment variables need to be setup:

	$PATH must contain $FNCS_INSTALL/bin

	$LD_LIBRARY_PATH must contain $FNCS_INSTALL/lib

 GridLAB-D

GridLAB-D

Overview

GridLAB-D is a steady-state Distribution System simulation tool. It solves full three phase unbalanced network power flows and provides highly detailed enduse load models. It is part of GridAPPS-D’s Simulation Engine. It serves for providing the real world distribution system environment for third party GridAPPS-D applications to monitor and control in real time.

Source Code

GridLAB-D is maintained by Pacific Northwest National Laboratories in GitHub. The repository is located at https://github.com/gridlab-d/gridlab-d. GridAPPS-D uses the 4.0 release which is in release candidate currently and located on branch release/RC4.0.

GridLAB-D Documentation

GridLAB-D’s Documentation is located at http://gridlab-d.shoutwiki.com/wiki/Main_Page

Building and Installing the Source

Linux

Prerequisites

The following packages are needed in order to build GridLAB-D.

:~$ sudo apt-get install \
gcc \
g++ \
automake \
libtool \
git

For GridAPPS-D GridLAB-D will need to be compiled with the FNCS shared Library so FNCS will need to be installed. For instructions on building and installing FNCS, please go here. For the purposes of this document the location of where you installed FNCS will be known as $FNCS_INSTALL.

Building GridLAB-D

For the purposes of this instruction set, the location to where you download the repository will be known as $GLD_INSTALL.

#download the release/RC4.0 branch repository
:$GLD_INSTALL$ git clone https://github.com/gridlab-d/gridlab-d.git -b release/RC4.0 --single-branch
#build and install xerces located in the third_party folder of the repository
:$GLD_INSTALL$ cd gridlab-d/third_party
:$GLD_INSTALL/gridlab-d/third_party$ tar -xzf xerces-c-3.1.1.tar.gz
:$GLD_INSTALL/gridlab-d/third_party$ cd xerces-c-3.1.1
:$GLD_INSTALL/gridlab-d/third_party/xerces-c-3.1.1$./configure
:$GLD_INSTALL/gridlab-d/third_party/xerces-c-3.1.1$ sudo make
:$GLD_INSTALL/gridlab-d/third_party/xerces-c-3.1.1$ sudo make install
#build and install GridLAB-D with FNCS
:$GLD_INSTALL/gridlab-d/third_party/xerces-c-3.1.1$ cd ../../
:$GLD_INSTALL/gridlab-d$ autoreconf -if
:$GLD_INSTALL/gridlab-d$./configure --prefix=$GLD_INSTALL/install --with-fncs=$FNCS_INSTALL --enable-silent-rules 'CFLAGS=-g -O0 -w' 'CXXFLAGS=-g -O0 -w' 'LDFLAGS=-g -O0 -w'
#before performing make. Make sure the envirionment variable $LD_LIBRARY_PATH contains the path $FNCS_INSTALL/lib if it doesn't then it will need to be added to $LD_LIBRARY_PATH
:$GLD_INSTALL/gridlab-d$ make
:$GLD_INSTALL/gridlab-d$ install

Environment Setup

In order for GridAPPS-D to be able to run GridLAB-D The following environment variables need to be setup:

	$PATH must contain $GLD_INSTALL/install/bin and $FNCS_INSTALL/bin

	$GLPATH must contain $GLD_INSTALL/install/lib/gridlabd and $GLD_INSTALL/install/share/gridlabd

	$CXXFLAGS must contain $GLD_INSTALL/install/share/gridlabd

	$LD_LIBRARY_PATH must contain $FNCS_INSTALL/lib

 <no title>

You will need to populate the mysql database with the ieee8500 model

wget https://github.com/GRIDAPPSD/Bootstrap/raw/master/gridappsd_mysql_dump.sql

mysql -u root -p < gridappsd_mysql_dump.sql

	To populate Blazegraph with the ieee8500 model
	
	Download https://github.com/GRIDAPPSD/Powergrid-Models/blob/master/CIM/ieee8500.xml

	java -Dbigdata.propertyFile=$GRIDAPPSD_INSTALL/builds/lib/conf/rwstore.properties -jar $GRIDAPPSD_INSTALL/builds/lib/blazegraph.jar >> $GRIDAPPSD_INSTALL/builds/log/blazegraph.log 2>&1 &

	Go to http://localhost:9999

	Click on the Update tab

	Choose the ieee8500 model file and change the format to RDF/XML

	Click Update

 <no title>

It is recommended to start with a linux platform such as Ubuntu and a ‘gridappsd’ user created. The bootstrap scripts should be run as root.

apt install -y git (you may need to run apt update first)
git clone https://github.com/GRIDAPPSD/Bootstrap.git
cd Bootstrap
chmod a+x *.sh
./bootstrap.sh

 <no title>

You will need to clone the GOSS-GridAPPS-D and viz repositories and build each

	
	GOSS-GridAPPS-D
	
	git clone https://github.com/GRIDAPPSD/GOSS-GridAPPS-D.git

	cd GOSS-GridAPPS-D

	./build-goss-test.sh

	mkdir -p $GRIDAPPSD_INSTALL/builds/log

	
	Vizualization
	
	git clone https://github.com/GRIDAPPSD/viz.git

	cd viz

	npm install

	webpack

	
	Blazegraph
	
	wget https://downloads.sourceforge.net/project/bigdata/bigdata/2.1.1/blazegraph.jar -O $GRIDAPPSD_INSTALL/builds/lib/blazegraph.jar

 Requirements

Requirements

	git

	docker version 17.12 or higher

	docker-compose version 1.16.1 or higher

Install Docker on Ubuntu

	Clone or download the repository

gridappsd@gridappsd-VirtualBox:~$ git clone https://github.com/GRIDAPPSD/gridappsd-docker
gridappsd@gridappsd-VirtualBox:~$ cd gridappsd-docker

	run the docker-ce installation script

gridappsd@gridappsd-VirtualBox:~/gridappsd-docker$./docker_install_ubuntu.sh

	log out of your Ubuntu session and log back in to make the docker groups change active

 <no title>

If the bootstrap doesn’t work, or you wish to install manually you will need the following prerequisites.

apt upgrade -y (as root user)

GridAPPS-D Dependencies - Use apt install for the following dependencies

apt install -y vim git mysql-server automake default-jdk g++ gcc python python-pip libtool apache2 gradle nodejs-legacy npm curl

	vim

	Git

	Mysql-server (I set the root pw as gridappsd1234)

	Automake

	Default-jdk

	G++

	Gcc

	Python (v 2.x)

	Python-pip

	Libtool

	Apache2

	Gradle

	nodejs-legacy

	npm

	curl

Then apply the following pip installs

pip install –upgrade pip

pip install stomp.py
pip install pyyaml

	pip install –upgrade pip

	pip install stomp.py

	pip install pyyaml

As well as the following npm packages

	npm install -g express

	npm install -g ejs

	npm install -g typescript

	npm install -g typings

	npm install -g webpack

The following structure should be set up to enable the run scripts to execute correctly.

	Griddapps-project

	builds/

	sources/

 <no title>

To start the platform, open two terminal windows:

	
	To start GridAPPS-D, this should also start the web visualization
	
	cd gridappsd_project/sources/GOSS-GridAPPS-D

	./run-goss-test.sh

	In a browser go to http://localhost:8082/ieee8500

 <no title>

Testing information will be added later

 Application Architecture

Application Architecture

The proposed restoration application can be implemented in an advanced distribution management system (ADMS) as shown in Figure 1. Figure shows the overall architecture of a modern DMS with integration of several subsystems such as customer information system (CIS), geographical information system (GIS), interactive voice response (IVR), advanced metering infrastructure (AMI), SCADA and flowchart of the proposed DSR framework. Once a power outage happens, three specific tasks are performed in the DMS to restore the power to out-of-service area:

	Information Collection: To monitor the power distribution system condition and gather resource information.

	Information Processing: For system model identification and fault location.

	Service Restoration: To find the candidate switch and generate DER control signals for circuit reconfiguration.

[image: flowchart]

Figure 1: Architecture of a modern distribution management system and flowchart of the proposed restoration application.

 Leveraging the GridAPPS-D Platform

Leveraging the GridAPPS-D Platform

The realization of an autonomous restoration application requires a measurement and control environment that provides post-fault situational awareness and the ability to remotely deploy the decisions for restoration.
GridAPPS-D is an open-source, standards-based platform designed to support the development of advanced, data-driven distribution system operation and/or planning applications that take advantage of the data-rich environment expected in modernized electric power distribution systems with smart grid technologies.

Figure 2 shows a schematic for the interaction and communication among the distribution system operational sub-system for the proposed restoration application. The platform is typically integrated with other related data and decision-support systems/subsystems such as DERMS, SCADA, OMS, GIS, AMI, CIS to: a) monitor the distribution system conditions, b) obtain the DER availability and operating conditions, and c) for load estimation and control.

[image: archi]

Figure 2: Integration of proposed application to the GridAPPS-D platform. GOSS/FNCS is the PNNL’s platform for data exchange among subsystems. GOSS: GridOPTICS Software System; FNCS: Framework for network simulation.

 Contact Us

Contact Us

WSU team can be reached at shiva.poudel@wsu.edu or anamika.dubey@wsu.edu.

For more information about the lab, Click Here [https://eecs.wsu.edu/~adubey/]

 Definition of Terms

Definition of Terms

Fault - Opening of normally-closed switch in response to any abnormal operating condition on its downstream.

Platform - Refers to GridAPPS-D platform.

Simulation - A real world distribution system currently done by GridLAB-D

Simulator - In current release GridLAB-D serves as the simulator.

CPLEX - A commercial optimization software package for solving the large-scale optimization problem

GridLAB-D - GridLAB-D is a distribution level powerflow simulator. It acts as the real world distribution system in GridAPPS-D.

Power System Model - A modified IEEE 8500-node feeder is used as the test case

 Start the docker container services

Start the docker container services

	Note that this documentation is based on develop tag

gridappsd@gridappsd-VirtualBox:~/gridappsd-docker$./run.sh -t develop

	The run.sh does the following
	
	download the mysql dump file

	download the blazegraph data

	start the docker containers

	ingest the blazegraph data

	connect to the gridappsd container

The message in the container looks something like this:

Starting gridappsddocker_redis_1 ...
Starting gridappsddocker_proven_1 ...
Starting gridappsddocker_blazegraph_1 ...
Starting gridappsddocker_influxdb_1 ...
Starting gridappsddocker_mysql_1 ... done
Starting gridappsddocker_gridappsd_1 ... done
Starting gridappsddocker_wsu_res_app_1 ...
Starting gridappsddocker_wsu_res_app_1 ... done

Getting blazegraph status

Checking blazegraph data

Blazegrpah data available (1954268)

Getting viz status

Containers are running

Connecting to the gridappsd container
docker exec -it gridappsddocker_gridappsd_1 /bin/bash

gridappsd@78a3d22dd2b9:/gridappsd$

Restoration application container

gridappsd@gridappsd-VirtualBox:~/WSU-Restoration$ docker exec -it gridappsddocker_wsu_res_app_1 bash

	This will take you inside the application container.

root@1b762c641f24:/usr/src/gridappsd-restoration#

At this point, we should have two terminal open with gridappsd-docker container and restoration application terminal.

root@1b762c641f24:/usr/src/gridappsd-restoration#
gridappsd@78a3d22dd2b9:/gridappsd$

	Installing CPLEX in container

	Note that the installation command can be written inside the Dockerfile beforehand. However, we do the installation here manually before starting the platform.

root@1b762c641f24:/usr/src/gridappsd-restoration# cd /opt/ibm/ILOG/CPLEX_Studio129/cplex/python/3.6/x86-64_linux/
root@1b762c641f24:/opt/ibm/ILOG/CPLEX_Studio129/cplex/python/3.6/x86-64_linux# python setup.py install

	ATTENTION: It is required that the application container has the python version compatible with the CPLEX. For example, CPLEX_STUDIO129 requires python 3.6. Thus, Python3.6 should be made available in the application container.

Executing the application container

	Now, get back to the path where application is mounted.

root@1b762c641f24:/opt/ibm/ILOG/CPLEX_Studio129/cplex/python/3.6/x86-64_linux# cd /usr/src/gridappsd-restoration

	The following runs the application from terminal

root@1b762c641f24:/usr/src/gridappsd-restoration# cd Restoration
root@1b762c641f24:/usr/src/gridappsd-restoration/Restoration# python main.py [simulation_ID] '{"power_system_config": {"Line_name":"_AAE94E4A-2465-6F5E-37B1-3E72183A4E44"}}'

	Running application from the terminal requires Simulation_ID. To get the correct Simulatio_ID, we need to start the platform through the browser. This will be explained in detail in the next section (Visualization).

Starting GridAPPS-D Platform

	Start the platform from the gridappsd-docker container

gridappsd@78a3d22dd2b9:/gridappsd$./run-gridappsd.sh

	Following message can be seen at the end of running terminal. This confirms, the platform is running and we can start the application from the browser.

Registering user roles: application2 -- application
Registering user roles: application1 -- application
Registering user roles: operator3 -- operator
Registering user roles: operator2 -- operator
Registering user roles: evaluator2 -- evaluator,operator
Registering user roles: operator1 -- operator
Registering user roles: evaluator1 -- evaluator,operator
Registering user roles: testmanager2 -- testmanager
Registering user roles: testmanager1 -- testmanager
Registering user roles: service2 -- service
Registering user roles: service.pid -- pnnl.goss.gridappsd.security.rolefile
Registering user roles: service1 -- service
CREATING LOG DATA MGR MYSQL
{"id":"WSU_restoration","description":"Resilient Restoration Application","creator":"WSU","inputs":[],"outputs":[],"options":["(simulationId)","\u0027(request)\u0027"],"execution_path":"python /usr/src/gridappsd-restoration/Restoration/main.py","type":"REMOTE","launch_on_startup":false,"prereqs":["gridappsd-voltage-violation","gridappsd-alarms"],"multiple_instances":true}
{"heartbeatTopic":"/queue/goss.gridappsd.remoteapp.heartbeat.WSU_restoration","startControlTopic":"/topic/goss.gridappsd.remoteapp.start.WSU_restoration","stopControlTopic":"/topic/goss.gridappsd.remoteapp.stop.WSU_restoration","errorTopic":"Error","applicationId":"WSU_restoration"}

 Download the application

Download the application

	Clone or download the repository. The updated code is in the develop branch.

gridappsd@gridappsd-VirtualBox:~$ git clone https://github.com/shpoudel/WSU-Restoration -b develop
gridappsd@gridappsd-VirtualBox:~$ cd WSU-Restoration

Creating the application container

	From the command line execute the following commands to build the wsu-restoration container. Note that there is a dot at end of command.

gridappsd@gridappsd-VirtualBox:~/WSU-Restoration$ docker build --network=host -t wsu-restoration-app .

Mount the application

	Add following to the docker-compose.yml file if CPLEX is available

wsu_res_app:
image: wsu-restoration-app
volumes:
 - /opt/ibm/ILOG/CPLEX_Studio129/:/opt/ibm/ILOG/CPLEX_Studio129
environment:
 GRIDAPPSD_URI: tcp://gridappsd:61613
depends_on:
 - gridappsd

	Add following to the docker-compose.yml file if CPLEX is not available. In addition, replace prob.solve(CPLEX(msg=1)) with prob.solve() in restoration_WSU.py

wsu_res_app:
image: wsu-restoration-app
environment:
 GRIDAPPSD_URI: tcp://gridappsd:61613
depends_on:
 - gridappsd

 <no title>

Clone the Powergrid-Models repository

git clone https://github.com/GRIDAPPSD/Powergrid-Models.git

Install the required python module

pip install SPARQLWrapper

Modify the Powergrid-Models/Meas/constants.py file. Change the blazegraph_url to “http://localhost:8889/bigdata/sparql”.

Create a temporary directory for the measurements files

mkdir tmp
cd tmp

List the feeder and feeder id

python3 ../Powergrid-Models/Meas/ListFeeders.py

Generate the measurements file using the feeder and feeder id from the previous step

python3 ../Powergrid-Models/Meas/ListMeasureables.py ieee123pv _E407CBB6-8C8D-9BC9-589C-AB83FBF0826D

Load the measurements into Blazegraph

for f in `ls -1 *txt`; do
 python3 ../Powergrid-Models/Meas/InsertMeasurements.py $f
done

 Query Time-series database

Query Time-series database

Connect to the running GridAPPS-D container

user@foo>docker exec -it gridappsddocker_gridappsd_1 bash

Now we are inside the executing container. Start the platform.

root@737c30c82df7:/gridappsd# ./run-docker.sh

Open your browser to http://localhost:8080/ and click the menu button.

[image: home-image]

Select Browse Database from the menu.

[image: viz-menu]

Select the time-series option.

[image: database-browser]

Enter the time-series query in the textarea and the results will be displayed in the space below the textarea.

Stop GridAPPS-D platform

For an orderly shutdown of the platform:

Use Ctrl+C to stop gridappsd from running

 <no title>

Go to http://localhost:8889/bigdata for the Blazegraph Workbench. Go to the Update tab and use the browse option to choose the file to be uploaded. Click on Update to upload the file into Blazegraph.

[image: blazegraph_upload-image]

Once the model is uploaded to Blazegraph, the new model will be shown in the Simulation Configuration Form in the visualization under the line name dropdown. If the Viz app was already open, you will need to restart the browser to see the new model(This is due to caching).

[image: blazegraph_model_viz-image]

 Publishing Logs:

All applications and services should publish their log messages using using paltform;s log API.

Publishing Logs:

Log messages should be published on the following topic. Simulation id should be attached to the topic at the end.

goss.gridappsd.simulation.log.[simulation_id]

Message structure for publishing logs :

{
 "source": "",
 "processId": "",
 "timestamp": "long",
 "processStatus": "[STARTED|STOPPED|RUNNING|ERROR|PASSED|FAILED]",
 "logMessage": "",
 "logLevel": "[INFO|DEBUG|ERROR]",
 "storeToDb": [true|false]
}

where,

source is the filename publishing log message.

processId is the simulation id.

timestamp is in epoch format.

storeToDb is true if you want to store this message in log database for later.

Subscribing to Logs:

For the currently running simulation, subcribe to following topic with simulation id appended at the end to receive real time logs:

goss.gridappsd.simulation.log.[simulation_id]

Querying Logs:

Query request should be sent at following topic:

goss.gridappsd.process.request.data.log

User can query log data by sending either custom SQL query string or using query filters.

	Custom query string:

Logs are stored in MySQL database in a table named log with following columns:
source, processId,timestamp, processStatus, logMessage, logLevel.
User can create custom SQL query string to get log data:

{"query":"select * from log"}

Custom query response:

{ "data": [
 { "process_id": "", "process_status": "RUNNING", "log_level": "INFO", "log_message": "Starting gov.pnnl.goss.gridappsd.app.AppManagerImpl", "id": "1", "source": "gov.pnnl.goss.gridappsd.app.AppManagerImpl", "timestamp": "2018-11-14 21:51:11.0", "username": "system" },
 { "process_id": "", "process_status": "RUNNING", "log_level": "INFO", "log_message": "Found 0 applications", "id": "2", "source": "gov.pnnl.goss.gridappsd.app.AppManagerImpl", "timestamp": "2018-11-14 21:51:14.0", "username": "system" },
], "responseComplete": true, "id": "1792453601" }

	Query filters:

An example for query filters are

{
 "source": "ProcessEvent",
 "processId": "12345678",
 "processStatus": "DEBUG",
 "logLevel": "DEBUG"
}

For more details on log message filter look at ‘Publishing Logs’ section.

Custom query response:

{ "data": [
 { "process_id": "414798372", "process_status": "RUNNING", "log_level": "DEBUG", "log_message": "New rewuest received", "id": "8", "source": "ProcessEvent", "timestamp": "2018-11-14 21:51:29.0", "username": "system" },
 { "process_id": "", "process_status": "RUNNING", "log_level": "DEBUG", "log_message": "Running application", "id": "2", "source": "ProcessEvent", "timestamp": "2018-11-14 21:51:30.0", "username": "system" },
], "responseComplete": true, "id": "1792453601" }

 Start GridAPPS-D platform

Start GridAPPS-D platform

Connect to the running GridAPPS-D container

user@foo>docker exec -it gridappsddocker_gridappsd_1 bash

Now we are inside the executing container. Start the platform.

root@737c30c82df7:/gridappsd# ./run-docker.sh

Open your browser to http://localhost:8080/ and click the menu button.

[image: home-image]

Start a Simulation

Choose Simulations from the menu.

[image: menu-image]

To run a demo simulation keep the selected and entered values as it is. Otherwise select/enter Powergrid, Simulation and Application configuration values.
Click the submit button to save the configuration.

[image: config-image]

[image: config-image]

[image: config-image]

Click the triangle to start the simulation.

[image: start-image]

The demo simulation runs 2 minutes of load variations with the sample-app
controlling capacitor banks on the IEEE 8500-node test system [CIT2].
Most of Figure 1 is devoted to a map layout view of the test circuit, with updated
labels for capacitor banks and voltage regulators. On the right-hand side, strip
chart plots of the phase ABC voltages at capacitors and regulators, phase
ABC substation power levels, and phase ABC regulator taps are continually
updated. Capacitor bank labels on the circuit map view change between
OPEN and CLOSED to show the bank status as load varies and the VVO
application issues control commands. While GridAPPS-D runs the demo,
GridLAB-D [CIT8] simulates power system operation and exchanges
information with the sample-app using GOSS [CIT6] and FNCS [CIT7].

Following image shows the demo simulation output of the sample-app running on the IEEE 8500-node test system.
Simulation Status at the bottom of the screen will display the simulation log messages. The simulation can be paused or stopped using the play and stop button.

[image: rc3_overview_image0]

Stop GridAPPS-D platform

For an orderly shutdown of the platform:

Use Ctrl+C to stop gridappsd from running

Adding Events

Communication outage and fault events can be added using the Test Configuration page

Select the CommOutage radio button for adding Communication Outage Events

[image: config-image]

Select the Fault radio button for adding Fault Events

[image: config-image]

Added events can be viewed in a tabular format on the right side of the page

[image: config-image]

The added events for a simulation can be seen in the events view

[image: config-image]

 Start a Simulation

A publish and subscribe mechanism is utilized for clients and applications to communicate with the GridAPPS-D platform. The next sections describe the topics and expected message formats for starting a simulation, receiving data from a simulation, and interacting with an ongoing simulation.

Start a Simulation

Returns simulation id.

Queue:

goss.gridappsd.process.request.simulation

Example Request:

{

power_system_config: the CIM model to be used in the simulation

"power_system_config": {
 "GeographicalRegion_name": "ieee8500nodecktassets_Region",
 "SubGeographicalRegion_name": "ieee8500nodecktassets_SubRegion",
 "Line_name": "ieee8500"
},

simulation_config: the paramaters used by the simulation

"simulation_config": {
 "start_time": "2009-07-21 00:00:00",
 "duration": "120",
 "simulator": "GridLAB-D",
 "timestep_frequency": "1000",
 "timestep_increment": "1000",
 "simulation_name": "ieee8500",
 "power_flow_solver_method": "NR",

simulation_output: the objects and fields to be returned by the simulation

"simulation_output": {
 "output_objects": [{
 "name": "rcon_FEEDER_REG",
 "properties": ["connect_type",
 "Control",
 "control_level",
 "PT_phase",
 "band_center",
 "band_width",
 "dwell_time",
 "raise_taps",
 "lower_taps",
 "regulation"]
 },
 ]
},

model creation config: the paramaters used to generate the input file for the simulation

 "model_creation_config": {
 "load_scaling_factor": "1",
 "schedule_name": "ieeezipload",
 "z_fraction": "0",
 "i_fraction": "1",
 "p_fraction": "0",
 "model_state":{
 "synchronousmachines":[
 {"name":"diesel590","p":100.000,"q":140.000},
 {"name":"diesel620","p":150.000,"q":500.000}
],
 "switches":[
 {"name":"2002200004641085_sw","open":true},
 {"name":"2002200004868472_sw","open":true},
 {"name":"l9407_48332_sw","open":true},
 {"name":"tsw568613_sw","open":false}
]
 }
 }
},

application config: inputs to any other applications that should run as part of the simluation, in this case the voltvar application

"application_config": {
 "applications": [{
 "name": "vvo",
 "config_string": "{\"static_inputs\": {\"ieee8500\" : {\"control_method\": \"ACTIVE\", \"capacitor_delay\": 60, \"regulator_delay\": 60, \"desired_pf\": 0.99, \"d_max\": 0.9, \"d_min\": 0.1,\"substation_link\": \"xf_hvmv_sub\",\"regulator_list\": [\"reg_FEEDER_REG\", \"reg_VREG2\", \"reg_VREG3\", \"reg_VREG4\"],\"regulator_configuration_list\": [\"rcon_FEEDER_REG\", \"rcon_VREG2\", \"rcon_VREG3\", \"rcon_VREG4\"],\"capacitor_list\": [\"cap_capbank0a\",\"cap_capbank0b\", \"cap_capbank0c\", \"cap_capbank1a\", \"cap_capbank1b\", \"cap_capbank1c\", \"cap_capbank2a\", \"cap_capbank2b\", \"cap_capbank2c\", \"cap_capbank3\"], \"voltage_measurements\": [\"nd_l2955047,1\", \"nd_l3160107,1\", \"nd_l2673313,2\", \"nd_l2876814,2\", \"nd_m1047574,3\", \"nd_l3254238,4\"], \"maximum_voltages\": 7500, \"minimum_voltages\": 6500,\"max_vdrop\": 5200,\"high_load_deadband\": 100,\"desired_voltages\": 7000, \"low_load_deadband\": 100,\"pf_phase\": \"ABC\"}}}"
 }]
}

Subscribe to Simulation Output

Topic:

/topic/goss.gridappsd.simulation.output.[simulation_id]

Where simulation_id is response from start simulation API.

Example Message:

{
 "simulation_id" : "12ae2345",
 "message" : {
 "timestamp" : "1357048800",
 "measurements" : {
 "123a456b-789c-012d-345e-678f901a234b":{
 "measurement_mrid" : "123a456b-789c-012d-345e-678f901a234b"
 "magnitude" : 3410.456,
 "angle" : -123.456
 }
 }
}

Subscribe to Simulation Logs

Topic:

/topic/goss.gridappsd.simulation.log.[simulation_id]

Where simulation_id is response from start simulation API.

Example Message:

{
 "source": "",
 "processId": "",
 "timestamp": "",
 "processStatus": "[STARTING|STARTED|STOPPED|RUNNING|ERROR|CLOSED|COMPLETE]",
 "logMessage": "",
 "logLevel": "[INFO|DEBUG|ERROR]",
 "storeToDb": [true|false]
}

Send Input to Simulation

Topic:

/topic/goss.gridappsd.simulation.input.[simulation_id]

Example Message:

{
 "command": "update",
 "input": {
 "simulation_id": "123456",
 "message": {
 "timestamp": 1357048800,
 "difference_mrid": "123a456b-789c-012d-345e-678f901a235c",
 "reverse_differences": [{

 "object": "61A547FB-9F68-5635-BB4C-F7F537FD824E",
 "attribute": "ShuntCompensator.sections",
 "value": 1
 },
 {

 "object": "E3CA4CD4-B0D4-9A83-3E2F-18AC5F1B55BA",
 "attribute": "ShuntCompensator.sections",
 "value": 0
 }
],
 "forward_differences": [{

 "object": "61A547FB-9F68-5635-BB4C-F7F537FD824E",
 "attribute": "ShuntCompensator.sections",
 "value": 0
 },
 {

 "object": "E3CA4CD4-B0D4-9A83-3E2F-18AC5F1B55BA",
 "attribute": "ShuntCompensator.sections",
 "value": 1
 }
]
 }
 }
}

Pause Simulation

Topic:

/topic/goss.gridappsd.simulation.input.[simulation_id]

Example Message:

{
 "command": "pause"
}

Resume Simulation

Topic:

/topic/goss.gridappsd.simulation.input.[simulation_id]

Example Message:

{
 "command": "resume"
}

Resume and Pause the Simulation after a Specified Number of Seconds

Topic:

/topic/goss.gridappsd.simulation.input.[simulation_id]

Example Message:

{
 "command": "resumePauseAt",
 "input": {
 "pauseIn": 10
 }
}

Input/Output Topics

The FNCS Bridge input and output topics are the main driver behind controlling the simulation and subscribing to the latest data from the simulation.
FNCS Bridge listens for input on topic goss/gridappsd/fncs/input and publishes responses on topic goss/gridappsd/fncs/output

Applications that wish to interact with the simulation can do so by subscribing to to the output topic and publishing commands to the input topic.

Each message should contain a command field, this specifies the operation that is either sent to teh input topic or responded to on the output topic. The available values for the command field are isInitialized, nextTimeStep, update, and stop. These are each described in more depth below.

	
	isInitialized
	goss/gridappsd/fncs/input - Checks to see if the simulator is initialized, meaning that it has established a connection to both GOSS and the simulator. This command takes no other parameters.

{"command": "isInitialized"}

goss/gridappsd/fncs/output - Returns simulator initializtion status (true/false) and any initialization messages.

{"command": "isInitialized", "response":<true/false>, "output":"Any messages from simulator regarding initialization"}

	
	nextTimeStep
	goss/gridappsd/fncs/input - Increments the simulator to the specified timestep, in a typical real-time simulation it will be incremented once per second. The only parameter is the current time in seconds (after the start of the simulation), this command will initiate the next time step in the simulator.

{"command": "nextTimeStep", "currentTime":<seconds from start of simulation>}

goss/gridappsd/fncs/output - Returns the current state of the objects and properties in the simulator, which objects and properties are specified by the simluation output. The is the output that applications will wish to subscribe to. The visualization application subscribes to this output to display the latest capacitor and regulator state. The volt-var optimization application subscribes to this output when managing voltage levels within the simulation

{"command": "nextTimeStep", "output": "{\"ieee8500\":{\"cap_capbank0a\":{\"capacitor_A\":400000.0,\"control\":\"MANUAL\",\"control_level\":\"BANK\",\"dwell_time\":100.0,\"phases\":\"AN\",\"phases_connected\":\"NA\",\"pt_phase\":\"A\",\"switchA\":\"CLOSED\"},\"cap_capbank0b\":{\"capacitor_B\":400000.0,\"control\":\"MANUAL\",\"control_level\":\"BANK\",\"dwell_time\":101.0,\"phases\":\"BN\",\"phases_connected\":\"NB\",\"pt_phase\":\"B\",\"switchB\":\"CLOSED\"},\"cap_capbank0c\":{\"capacitor_C\":400000.0,\"control\":\"MANUAL\",\"control_level\":\"BANK\",\"dwell_time\":102.0,\"phases\":\"CN\",\"phases_connected\":\"NC\",\"pt_phase\":\"C\",\"switchC\":\"CLOSED\"},\"cap_capbank1a\":{\"capacitor_A\":300000.0,\"control\":\"MANUAL\",\"control_level\":\"BANK\",\"dwell_time\":100.0,\"phases\":\"AN\",\"phases_connected\":\"NA\",\"pt_phase\":\"A\",\"switchA\":\"CLOSED\"},\"cap_capbank1b\":{\"capacitor_B\":300000.0,\"control\":\"MANUAL\",\"control_level\":\"BANK\",\"dwell_time\":101.0,\"phases\":\"BN\",\"phases_connected\":\"NB\",\"pt_phase\":\"B\",\"switchB\":\"CLOSED\"},\"cap_capbank1c\":{\"capacitor_C\":300000.0,\"control\":\"MANUAL\",\"control_level\":\"BANK\",\"dwell_time\":102.0,\"phases\":\"CN\",\"phases_connected\":\"NC\",\"pt_phase\":\"C\",\"switchC\":\"CLOSED\"},\"cap_capbank2a\":{\"capacitor_A\":300000.0,\"control\":\"MANUAL\",\"control_level\":\"BANK\",\"dwell_time\":100.0,\"phases\":\"AN\",\"phases_connected\":\"NA\",\"pt_phase\":\"A\",\"switchA\":\"CLOSED\"},\"cap_capbank2b\":{\"capacitor_B\":300000.0,\"control\":\"MANUAL\",\"control_level\":\"BANK\",\"dwell_time\":101.0,\"phases\":\"BN\",\"phases_connected\":\"NB\",\"pt_phase\":\"B\",\"switchB\":\"CLOSED\"},\"cap_capbank2c\":{\"capacitor_C\":300000.0,\"control\":\"MANUAL\",\"control_level\":\"BANK\",\"dwell_time\":102.0,\"phases\":\"CN\",\"phases_connected\":\"NC\",\"pt_phase\":\"C\",\"switchC\":\"CLOSED\"},\"cap_capbank3\":{\"capacitor_A\":300000.0,\"capacitor_B\":300000.0,\"capacitor_C\":300000.0,\"control\":\"MANUAL\",\"control_level\":\"INDIVIDUAL\",\"dwell_time\":0.0,\"phases\":\"ABCN\",\"phases_connected\":\"NCBA\",\"pt_phase\":\"\",\"switchA\":\"CLOSED\",\"switchB\":\"CLOSED\",\"switchC\":\"CLOSED\"},\"nd_190-7361\":{\"voltage_A\":\"6410.387411-4584.456974j V\",\"voltage_B\":\"-7198.592139-3270.308372j V\",\"voltage_C\":\"642.547265+7539.531175j V\"},\"nd_190-8581\":{\"voltage_A\":\"6485.244722-4692.686497j V\",\"voltage_B\":\"-7183.641237-3170.693324j V\",\"voltage_C\":\"544.875720+7443.341013j V\"},\"nd_190-8593\":{\"voltage_A\":\"6723.279162-5056.725836j V\",\"voltage_B\":\"-7494.205738-3101.034602j V\",\"voltage_C\":\"630.475857+7534.534977j V\"},\"nd__hvmv_sub_lsb\":{\"voltage_A\":\"6261.474438-3926.148203j V\",\"voltage_B\":\"-6529.409296-3466.545236j V\",\"voltage_C\":\"247.131622+7348.295282j V\"},\"nd_l2673313\":{\"voltage_A\":\"6569.522312-5003.052614j V\",\"voltage_B\":\"-7431.486583-3004.840139j V\",\"voltage_C\":\"644.553331+7464.115915j V\"},\"nd_l2876814\":{\"voltage_A\":\"6593.064915-5014.031801j V\",\"voltage_B\":\"-7430.572726-3003.995538j V\",\"voltage_C\":\"643.473396+7483.558765j V\"},\"nd_l2955047\":{\"voltage_A\":\"5850.305846-4217.166594j V\",\"voltage_B\":\"-6729.652722-2987.617376j V\",\"voltage_C\":\"535.302083+7395.127354j V\"},\"nd_l3160107\":{\"voltage_A\":\"5954.507575-4227.423005j V\",\"voltage_B\":\"-6662.357613-3055.346879j V\",\"voltage_C\":\"600.213657+7317.832960j V\"},\"nd_l3254238\":{\"voltage_A\":\"6271.490549-4631.254028j V\",\"voltage_B\":\"-7169.987847-3099.952683j V\",\"voltage_C\":\"751.609655+7519.062260j V\"},\"nd_m1047574\":{\"voltage_A\":\"6306.632406-4741.568924j V\",\"voltage_B\":\"-7214.626338-2987.055914j V\",\"voltage_C\":\"622.058711+7442.125124j V\"},\"rcon_FEEDER_REG\":{\"Control\":\"MANUAL\",\"PT_phase\":\"CBA\",\"band_center\":126.5,\"band_width\":2.0,\"connect_type\":\"WYE_WYE\",\"control_level\":\"INDIVIDUAL\",\"dwell_time\":15.0,\"lower_taps\":16,\"raise_taps\":16,\"regulation\":0.10000000000000001},\"rcon_VREG2\":{\"Control\":\"MANUAL\",\"PT_phase\":\"CBA\",\"band_center\":125.0,\"band_width\":2.0,\"connect_type\":\"WYE_WYE\",\"control_level\":\"INDIVIDUAL\",\"dwell_time\":15.0,\"lower_taps\":16,\"raise_taps\":16,\"regulation\":0.10000000000000001},\"rcon_VREG3\":{\"Control\":\"MANUAL\",\"PT_phase\":\"CBA\",\"band_center\":125.0,\"band_width\":2.0,\"connect_type\":\"WYE_WYE\",\"control_level\":\"INDIVIDUAL\",\"dwell_time\":15.0,\"lower_taps\":16,\"raise_taps\":16,\"regulation\":0.10000000000000001},\"rcon_VREG4\":{\"Control\":\"MANUAL\",\"PT_phase\":\"CBA\",\"band_center\":125.0,\"band_width\":2.0,\"connect_type\":\"WYE_WYE\",\"control_level\":\"INDIVIDUAL\",\"dwell_time\":15.0,\"lower_taps\":16,\"raise_taps\":16,\"regulation\":0.10000000000000001},\"reg_FEEDER_REG\":{\"configuration\":\"rcon_FEEDER_REG\",\"phases\":\"ABC\",\"tap_A\":2,\"tap_B\":2,\"tap_C\":1,\"to\":\"nd__hvmv_sub_lsb\"},\"reg_VREG2\":{\"configuration\":\"rcon_VREG2\",\"phases\":\"ABC\",\"tap_A\":10,\"tap_B\":6,\"tap_C\":2,\"to\":\"nd_190-8593\"},\"reg_VREG3\":{\"configuration\":\"rcon_VREG3\",\"phases\":\"ABC\",\"tap_A\":16,\"tap_B\":10,\"tap_C\":1,\"to\":\"nd_190-8581\"},\"reg_VREG4\":{\"configuration\":\"rcon_VREG4\",\"phases\":\"ABC\",\"tap_A\":12,\"tap_B\":12,\"tap_C\":5,\"to\":\"nd_190-7361\"},\"xf_hvmv_sub\":{\"power_in_A\":\"1739729.121744-774784.928874j VA\",\"power_in_B\":\"1659762.622236-785218.729252j VA\",\"power_in_C\":\"1709521.679116-849734.584017j VA\"}}}\n"}

	
	update
	goss/gridappsd/fncs/input - Sends an update command which can change the capacitor and regulator status within the simulator, this is used by the volt-var optimization application. Parameters include a message field, which contains the simulation name and the desired values for the objects to be updated.

{"command": "update", "message": {"ieee8500": {"reg_FEEDER_REG": {"tap_C": -3, "tap_B": -2, "tap_A": -1}, "reg_VREG4": {"tap_C": 1, "tap_B": 8, "tap_A": 8}, "reg_VREG2": {"tap_C": -1, "tap_B": 2, "tap_A": 6}, "reg_VREG3": {"tap_C": -3, "tap_B": 6, "tap_A": 12}}}}

	
	stop
	goss/gridappsd/fncs/input - Stops the simulator and shuts down the bridge. No additional parameters are required

{"command": "stop"}

 <no title>

In the web-based visualization, click the Play button at the top right to start the simulation using the default run configuration. Behind the scenes this uses the websockets/javascript API described in a previous section.

[image: rc1_starting_in_viz_image0]

 Request all GridLAB-D configuration files

Request all GridLAB-D configuration files

Generates all configuration files necessary to run a sumulation using the GridLAB-D simulator. Returns the diretory where all of the configuration files are stored.

	Required: configurationType, parameters[model_id,directory,simulationname,simulation_start_time,simulation_duration,simulation_id,simulation_broker_host,simulation_broker_port]

	Optional: parameters[i_fraction, p_fraction, z_fraction, load_scaling_factor, schedule_name,solver_method]

Request: goss.gridappsd.process.request.config

{
 "configurationType": "GridLAB-D All",
 "parameters": {
 "load_scaling_factor": "1.0",
 "i_fraction": "1.0",
 "model_id": "_C1C3E687-6FFD-C753-582B-632A27E28507",
 "p_fraction": "0.0",
 "simulation_id": "12345",
 "z_fraction": "0.0",
 "simulation_broker_host": "localhost",
 "simulation_name": "ieee8500",
 "simulation_duration": "60",
 "simulation_start_time": "1518958800",
 "solver_method": "NR",
 "schedule_name": "ieeezipload",
 "simulation_broker_port": "61616",
 "directory": "/tmp/gridlabdsimulation/"
 }
}

Response:
<directory where files have been stored>

Request GridLAB-D Base File

Generates the main GLM file required by the GridLAB-D simulator

	Required: configurationType, parameters[model_id]

	Optional: parameters[simulation_id, i_fraction, p_fraction, z_fraction, load_scaling_factor, schedule_name]

Request: goss.gridappsd.process.request.config

{
 "configurationType": "GridLAB-D Base GLM",
 "parameters": {
 "i_fraction": "1.0",
 "z_fraction": "0.0",
 "model_id": "_C1C3E687-6FFD-C753-582B-632A27E28507",
 "load_scaling_factor": "1.0",
 "schedule_name": "ieeezipload",
 "p_fraction": "0.0"
 }
}

Response:

object regulator_configuration {
name "rcon_reg1a";
connect_type WYE_WYE;
 Control MANUAL; // LINE_DROP_COMP;
.......

Request GridLAB-D Symbols File

Generates the symbols file with XY coordinates used by the GridLAB-D simulator

	Required: configurationType, parameters[model_id]

	Optional: parameters[simulation_id]

Request: goss.gridappsd.process.request.config

{
 "configurationType": "GridLAB-D Symbols",
 "parameters": {
 "model_id": "_C1C3E687-6FFD-C753-582B-632A27E28507"
 }
}

Response:
::
{“feeders”:[

	{“name”:”ieee123”,
	“mRID”:”_C1C3E687-6FFD-C753-582B-632A27E28507”,
“substation”:”IEEE123”,
“substationID”:”_FE44B314-385E-C2BF-3983-3A10C6060022”,
“subregion”:”Medium”,
“subregionID”:”_1CD7D2EE-3C91-3248-5662-A43EFEFAC224”,
“region”:”IEEE”,
“regionID”:”_73C512BD-7249-4F50-50DA-D93849B89C43”,
“swing_nodes”:[
{“name”:”source”,”bus”:”150”,”phases”:”ABC”,”nominal_voltage”:2401.8,”x1”:100.0,”y1”:1500.0}
],
“synchronousmachines”:[
],
“capacitors”:[

Request CIM Dictionary file

Generates a dictionary file which maps between the mrid identifiers used by the CIM model and the other names of model objects used by simulators.

	Required: configurationType, parameters[model_id]

	Optional: parameters[simulation_id]

Request: goss.gridappsd.process.request.config

{
 "configurationType":"CIM Dictionary",
 "parameters":{"model_id":"_C1C3E687-6FFD-C753-582B-632A27E28507"}
 }

Response:

{"feeders":[
 {"name":"ieee123",
 "mRID":"_C1C3E687-6FFD-C753-582B-632A27E28507",
 "substation":"IEEE123",
 "substationID":"_FE44B314-385E-C2BF-3983-3A10C6060022",
 "subregion":"Medium",
 "subregionID":"_1CD7D2EE-3C91-3248-5662-A43EFEFAC224",
 "region":"IEEE",
 "regionID":"_73C512BD-7249-4F50-50DA-D93849B89C43",
 "synchronousmachines":[
],
 "capacitors":[
 {"name":"c83","mRID":"_232DD3A8-9A3C-4053-B972-8A5EB49FD980","CN1":"83","phases":"ABC","kvar_A":200.0,"kvar_B":200.0,"kvar_C":200.0,"nominalVoltage":4160.0,"nomU":4160.0,"phaseConnection":"Y","grounded":true,"enabled":false,"mode":null,"targetValue":0.0,"targetDeadband":0.0,"aVRDelay":0.0,"monitoredName":null,"monitoredClass":null,"monitoredBus":null,"monitoredPhase":null},
 {"name":"c88a","mRID":"_9A74DCDC-EA5A-476B-9B99-B4FB90DC37E3","CN1":"88","phases":"A","kvar_A":50.0,"kvar_B":0.0,"kvar_C":0.0,"nominalVoltage":4160.0,"nomU":2402.0,"phaseConnection":"Y","grounded":true,"enabled":false,"mode":null,"targetValue":0.0,"targetDeadband":0.0,"aVRDelay":0.0,"monitoredName":null,

.......
]
}]}

Request CIM Feeder Index file

Generates a list of the feeders available powergrid model data store

	Required: configurationType, parameters[model_id]

	Optional: parameters[simulation_id]

Request: goss.gridappsd.process.request.config

{
 "configurationType":"CIM Feeder Index",
 "parameters":{"model_id":"_C1C3E687-6FFD-C753-582B-632A27E28507"}
 }

Response:

{"feeders":[

{“name”:”test9500new”,”mRID”:”_AAE94E4A-2465-6F5E-37B1-3E72183A4E44”,”substationName”:”ThreeSubs”,”substationID”:”_40485321-9B2C-1B8C-EC33-39D2F7948163”,”subregionName”:”Large”,”subregionID”:”_A1170111-942A-6ABD-D325-C64886DC4D7D”,”regionName”:”IEEE”,”regionID”:”_73C512BD-7249-4F50-50DA-D93849B89C43”},
{“name”:”ieee123”,”mRID”:”_C1C3E687-6FFD-C753-582B-632A27E28507”,”substationName”:”IEEE123”,”substationID”:”_FE44B314-385E-C2BF-3983-3A10C6060022”,”subregionName”:”Medium”,”subregionID”:”_1CD7D2EE-3C91-3248-5662-A43EFEFAC224”,”regionName”:”IEEE”,”regionID”:”_73C512BD-7249-4F50-50DA-D93849B89C43”},

]}

Request Simulation Output Configuration file

Generates file containing objects and properties with measurements avilable in the selected model

	Required: configurationType, parameters[model_id]

	Optional: parameters[simulation_id]

Request: goss.gridappsd.process.request.config

{
 "configurationType":"GridLAB-D Simulation Output",
 "parameters":{"model_id":"_C1C3E687-6FFD-C753-582B-632A27E28507"}
 }

Response:

{
 "cap_capbank0a": [
 "switchA",
 "shunt_A",
 "voltage_A"
],

 "cap_capbank1b": [
 "switchB",
 "voltage_B",
 "shunt_B"
],
 "cap_capbank2c": [
 "voltage_C",
 "switchC",
 "shunt_C"
],
 "cap_capbank0b": [
 "voltage_B",
 "switchB",
 "shunt_B"
],.......

Request all OpenDSS configuration files

Generates all configuration files necessary to run a sumulation using the OpenDSS simulator. Returns the diretory where all of the configuration files are stored.

	Required: configurationType, parameters[model_id,directory,simulationname,simulation_start_time,simulation_duration,simulation_id,simulation_broker_host,simulation_broker_port]

	Optional: parameters[i_fraction, p_fraction, z_fraction, load_scaling_factor, schedule_name,solver_method]

Request: goss.gridappsd.process.request.config

{
 "configurationType": "DSS All",
 "parameters": {
 "load_scaling_factor": "1.0",
 "i_fraction": "1.0",
 "model_id": "_C1C3E687-6FFD-C753-582B-632A27E28507",
 "p_fraction": "0.0",
 "simulation_id": "12345",
 "z_fraction": "0.0",
 "simulation_broker_host": "localhost",
 "simulation_name": "ieee8500",
 "simulation_duration": "60",
 "simulation_start_time": "1518958800",
 "solver_method": "NR",
 "schedule_name": "ieeezipload",
 "simulation_broker_port": "61616",
 "directory": "/tmp/dsssimulation/"
 }
}

Response:
<directory where files have been stored>

Request OpenDSS Base File

Generates the main GLM file required by the OpenDSS simulator

	Required: configurationType, parameters[model_id]

	Optional: parameters[simulation_id, i_fraction, p_fraction, z_fraction, load_scaling_factor, schedule_name]

Request: goss.gridappsd.process.request.config

{
 "configurationType": "DSS Base",
 "parameters": {
 "i_fraction": "1.0",
 "z_fraction": "0.0",
 "model_id": "_C1C3E687-6FFD-C753-582B-632A27E28507",
 "load_scaling_factor": "1.0",
 "schedule_name": "ieeezipload",
 "p_fraction": "0.0"
 }
}

Response:

clear
new Circuit.source phases=3 bus1=150 basekv=4.160 pu=1.00000 angle=0.00000 r0=0.00000 x0=0.00010 r1=0.00000 x1=0.00010
new Linecode.11 nphases=1 units=mi rmatrix=[1.32920] xmatrix=[1.34750] cmatrix=[11.9873]
new Linecode.1 nphases=3 units=mi rmatrix=[0.457600 | 0.156000 0.466600 | 0.153500 0.158000 0.461500] xmatrix=[1.07800 | 0.501700 1.04820 | 0.384900 0.423600 1.06510] cmatrix=[15.0567 | -4.85904 15.8641 | -1.85195 -3.08879 14.3156]

.......

Request OpenDSS Coordinates File

Generates the symbols file with XY coordinates used by the OpenDSS simulator

	Required: configurationType, parameters[model_id]

	Optional: parameters[simulation_id]

Request: goss.gridappsd.process.request.config

{
 "configurationType": "DSS Coordinate",
 "parameters": {
 "model_id": "_C1C3E687-6FFD-C753-582B-632A27E28507"
 }
}

Response:

88,2950.0,1300.0
89,2775.0,1125.0
197,3525.0,2200.0
110,4275.0,3050.0
111,4275.0,3625.0
112,4275.0,2925.0
113,4800.0,2925.0
114,5125.0,2925.0
90,2775.0,900.0
61s,3175.0,1300.0
91,2550.0,1125.0
92,2550.0,825.0
93,2325.0,1125.0
94,2325.0,850.0
95,2025.0,1125.0
96,2025.0,925.0
97,3525.0,2100.0
98,3800.0,2100.0
10,1450.0,2150.0
99,4350.0,2100.0
11,950.0,2150.0

Request YBus Export Configuration file

Generates file containing ybus configuration for the selected simulation. Simulation must be running.

	Required: configurationType, parameters[simulation_id]

Request: goss.gridappsd.process.request.config

{
 "configurationType":"YBus Export",
 "parameters":{"simulation_id":"12345"}
 }

Response:

{
 "yParseFilePath": [
 "Row,Col,G,B",
 "1,1,517.6253721,-539.2591296",
 "2,1,-3.438703156,9.070554234",
 "3,1,-5.837170999,11.07061383",
 "4,1,-500,500",
 "84,1,-9.232329792,20.56428834",
 "85,1,1.801223903,-4.751238599",
 "86,1,3.057563114,-5.798887966"

 Input/Output Topics

Input/Output Topics

The FNCS Bridge input and output topics are the main driver behind controlling the simulation and subscribing to the latest data from the simulation.
FNCS Bridge listens for input on topic goss/gridappsd/fncs/input and publishes responses on topic goss/gridappsd/fncs/output

Applications that wish to interact with the simulation can do so by subscribing to to the output topic and publishing commands to the input topic.

Each message should contain a command field, this specifies the operation that is either sent to teh input topic or responded to on the output topic. The available values for the command field are isInitialized, nextTimeStep, update, and stop. These are each described in more depth below.

	
	isInitialized
	goss/gridappsd/fncs/input - Checks to see if the simulator is initialized, meaning that it has established a connection to both GOSS and the simulator. This command takes no other parameters.

{"command": "isInitialized"}

goss/gridappsd/fncs/output - Returns simulator initializtion status (true/false) and any initialization messages.

{"command": "isInitialized", "response":<true/false>, "output":"Any messages from simulator regarding initialization"}

	
	nextTimeStep
	goss/gridappsd/fncs/input - Increments the simulator to the specified timestep, in a typical real-time simulation it will be incremented once per second. The only parameter is the current time in seconds (after the start of the simulation), this command will initiate the next time step in the simulator.

{"command": "nextTimeStep", "currentTime":<seconds from start of simulation>}

goss/gridappsd/fncs/output - Returns the current state of the objects and properties in the simulator, which objects and properties are specified by the simluation output. The is the output that applications will wish to subscribe to. The visualization application subscribes to this output to display the latest capacitor and regulator state. The volt-var optimization application subscribes to this output when managing voltage levels within the simulation

{"command": "nextTimeStep", "output": "{\"ieee8500\":{\"cap_capbank0a\":{\"capacitor_A\":400000.0,\"control\":\"MANUAL\",\"control_level\":\"BANK\",\"dwell_time\":100.0,\"phases\":\"AN\",\"phases_connected\":\"NA\",\"pt_phase\":\"A\",\"switchA\":\"CLOSED\"},\"cap_capbank0b\":{\"capacitor_B\":400000.0,\"control\":\"MANUAL\",\"control_level\":\"BANK\",\"dwell_time\":101.0,\"phases\":\"BN\",\"phases_connected\":\"NB\",\"pt_phase\":\"B\",\"switchB\":\"CLOSED\"},\"cap_capbank0c\":{\"capacitor_C\":400000.0,\"control\":\"MANUAL\",\"control_level\":\"BANK\",\"dwell_time\":102.0,\"phases\":\"CN\",\"phases_connected\":\"NC\",\"pt_phase\":\"C\",\"switchC\":\"CLOSED\"},\"cap_capbank1a\":{\"capacitor_A\":300000.0,\"control\":\"MANUAL\",\"control_level\":\"BANK\",\"dwell_time\":100.0,\"phases\":\"AN\",\"phases_connected\":\"NA\",\"pt_phase\":\"A\",\"switchA\":\"CLOSED\"},\"cap_capbank1b\":{\"capacitor_B\":300000.0,\"control\":\"MANUAL\",\"control_level\":\"BANK\",\"dwell_time\":101.0,\"phases\":\"BN\",\"phases_connected\":\"NB\",\"pt_phase\":\"B\",\"switchB\":\"CLOSED\"},\"cap_capbank1c\":{\"capacitor_C\":300000.0,\"control\":\"MANUAL\",\"control_level\":\"BANK\",\"dwell_time\":102.0,\"phases\":\"CN\",\"phases_connected\":\"NC\",\"pt_phase\":\"C\",\"switchC\":\"CLOSED\"},\"cap_capbank2a\":{\"capacitor_A\":300000.0,\"control\":\"MANUAL\",\"control_level\":\"BANK\",\"dwell_time\":100.0,\"phases\":\"AN\",\"phases_connected\":\"NA\",\"pt_phase\":\"A\",\"switchA\":\"CLOSED\"},\"cap_capbank2b\":{\"capacitor_B\":300000.0,\"control\":\"MANUAL\",\"control_level\":\"BANK\",\"dwell_time\":101.0,\"phases\":\"BN\",\"phases_connected\":\"NB\",\"pt_phase\":\"B\",\"switchB\":\"CLOSED\"},\"cap_capbank2c\":{\"capacitor_C\":300000.0,\"control\":\"MANUAL\",\"control_level\":\"BANK\",\"dwell_time\":102.0,\"phases\":\"CN\",\"phases_connected\":\"NC\",\"pt_phase\":\"C\",\"switchC\":\"CLOSED\"},\"cap_capbank3\":{\"capacitor_A\":300000.0,\"capacitor_B\":300000.0,\"capacitor_C\":300000.0,\"control\":\"MANUAL\",\"control_level\":\"INDIVIDUAL\",\"dwell_time\":0.0,\"phases\":\"ABCN\",\"phases_connected\":\"NCBA\",\"pt_phase\":\"\",\"switchA\":\"CLOSED\",\"switchB\":\"CLOSED\",\"switchC\":\"CLOSED\"},\"nd_190-7361\":{\"voltage_A\":\"6410.387411-4584.456974j V\",\"voltage_B\":\"-7198.592139-3270.308372j V\",\"voltage_C\":\"642.547265+7539.531175j V\"},\"nd_190-8581\":{\"voltage_A\":\"6485.244722-4692.686497j V\",\"voltage_B\":\"-7183.641237-3170.693324j V\",\"voltage_C\":\"544.875720+7443.341013j V\"},\"nd_190-8593\":{\"voltage_A\":\"6723.279162-5056.725836j V\",\"voltage_B\":\"-7494.205738-3101.034602j V\",\"voltage_C\":\"630.475857+7534.534977j V\"},\"nd__hvmv_sub_lsb\":{\"voltage_A\":\"6261.474438-3926.148203j V\",\"voltage_B\":\"-6529.409296-3466.545236j V\",\"voltage_C\":\"247.131622+7348.295282j V\"},\"nd_l2673313\":{\"voltage_A\":\"6569.522312-5003.052614j V\",\"voltage_B\":\"-7431.486583-3004.840139j V\",\"voltage_C\":\"644.553331+7464.115915j V\"},\"nd_l2876814\":{\"voltage_A\":\"6593.064915-5014.031801j V\",\"voltage_B\":\"-7430.572726-3003.995538j V\",\"voltage_C\":\"643.473396+7483.558765j V\"},\"nd_l2955047\":{\"voltage_A\":\"5850.305846-4217.166594j V\",\"voltage_B\":\"-6729.652722-2987.617376j V\",\"voltage_C\":\"535.302083+7395.127354j V\"},\"nd_l3160107\":{\"voltage_A\":\"5954.507575-4227.423005j V\",\"voltage_B\":\"-6662.357613-3055.346879j V\",\"voltage_C\":\"600.213657+7317.832960j V\"},\"nd_l3254238\":{\"voltage_A\":\"6271.490549-4631.254028j V\",\"voltage_B\":\"-7169.987847-3099.952683j V\",\"voltage_C\":\"751.609655+7519.062260j V\"},\"nd_m1047574\":{\"voltage_A\":\"6306.632406-4741.568924j V\",\"voltage_B\":\"-7214.626338-2987.055914j V\",\"voltage_C\":\"622.058711+7442.125124j V\"},\"rcon_FEEDER_REG\":{\"Control\":\"MANUAL\",\"PT_phase\":\"CBA\",\"band_center\":126.5,\"band_width\":2.0,\"connect_type\":\"WYE_WYE\",\"control_level\":\"INDIVIDUAL\",\"dwell_time\":15.0,\"lower_taps\":16,\"raise_taps\":16,\"regulation\":0.10000000000000001},\"rcon_VREG2\":{\"Control\":\"MANUAL\",\"PT_phase\":\"CBA\",\"band_center\":125.0,\"band_width\":2.0,\"connect_type\":\"WYE_WYE\",\"control_level\":\"INDIVIDUAL\",\"dwell_time\":15.0,\"lower_taps\":16,\"raise_taps\":16,\"regulation\":0.10000000000000001},\"rcon_VREG3\":{\"Control\":\"MANUAL\",\"PT_phase\":\"CBA\",\"band_center\":125.0,\"band_width\":2.0,\"connect_type\":\"WYE_WYE\",\"control_level\":\"INDIVIDUAL\",\"dwell_time\":15.0,\"lower_taps\":16,\"raise_taps\":16,\"regulation\":0.10000000000000001},\"rcon_VREG4\":{\"Control\":\"MANUAL\",\"PT_phase\":\"CBA\",\"band_center\":125.0,\"band_width\":2.0,\"connect_type\":\"WYE_WYE\",\"control_level\":\"INDIVIDUAL\",\"dwell_time\":15.0,\"lower_taps\":16,\"raise_taps\":16,\"regulation\":0.10000000000000001},\"reg_FEEDER_REG\":{\"configuration\":\"rcon_FEEDER_REG\",\"phases\":\"ABC\",\"tap_A\":2,\"tap_B\":2,\"tap_C\":1,\"to\":\"nd__hvmv_sub_lsb\"},\"reg_VREG2\":{\"configuration\":\"rcon_VREG2\",\"phases\":\"ABC\",\"tap_A\":10,\"tap_B\":6,\"tap_C\":2,\"to\":\"nd_190-8593\"},\"reg_VREG3\":{\"configuration\":\"rcon_VREG3\",\"phases\":\"ABC\",\"tap_A\":16,\"tap_B\":10,\"tap_C\":1,\"to\":\"nd_190-8581\"},\"reg_VREG4\":{\"configuration\":\"rcon_VREG4\",\"phases\":\"ABC\",\"tap_A\":12,\"tap_B\":12,\"tap_C\":5,\"to\":\"nd_190-7361\"},\"xf_hvmv_sub\":{\"power_in_A\":\"1739729.121744-774784.928874j VA\",\"power_in_B\":\"1659762.622236-785218.729252j VA\",\"power_in_C\":\"1709521.679116-849734.584017j VA\"}}}\n"}

	
	update
	goss/gridappsd/fncs/input - Sends an update command which can change the capacitor and regulator status within the simulator, this is used by the volt-var optimization application. Parameters include a message field, which contains the simulation name and the desired values for the objects to be updated.

{"command": "update", "message": {"ieee8500": {"reg_FEEDER_REG": {"tap_C": -3, "tap_B": -2, "tap_A": -1}, "reg_VREG4": {"tap_C": 1, "tap_B": 8, "tap_A": 8}, "reg_VREG2": {"tap_C": -1, "tap_B": 2, "tap_A": 6}, "reg_VREG3": {"tap_C": -3, "tap_B": 6, "tap_A": 12}}}}

	
	stop
	goss/gridappsd/fncs/input - Stops the simulator and shuts down the bridge. No additional parameters are required

{"command": "stop"}

 Query Request Queue

The Powergrid Model Data Manager API allows you to query the powergrid model data store.

Query Request Queue

Query request should be sent on following queue: goss.gridappsd.process.request.data.powergridmodel

Query Model Info

Returns list of names/ids for models, substations, subregions, and regions for all available feeders.

Allowed parameter is:

	Result Format – XML/JSON/CSV, Will return results as a list in the format selected.

Example Request:

{
 "requestType": "QUERY_MODEL_INFO",
 "resultFormat": "JSON"
}

Example Response for result format JSON:

{
 "models": [{
 "modelName": "ieee123",
 "modelId": "_C1C3E687-6FFD-C753-582B-632A27E28507",
 "stationName": "ieee123_Substation",
 "stationId": "_FE44B314-385E-C2BF-3983-3A10C6060022",
 "subRegionName": "large",
 "subRegionId": "_1CD7D2EE-3C91-3248-5662-A43EFEFAC224",
 "regionName": "ieee",
 "regionId": "_24809814-4EC6-29D2-B509-7F8BFB646437"
},

Query Model Names

Returns list of names for all available models.

Allowed parameter is:

	Result Format – XML/JSON/CSV, Will return results as a list in the format selected.

Example Request: goss.gridappsd.process.request.data.powergridmodel

{
 "requestType": "QUERY_MODEL_NAMES",
 "resultFormat": "JSON"
}

Example Response for result format JSON:

{
 "modelNames": ["_49AD8E07-3BF9-A4E2-CB8F-C3722F837B62",
 "_4F76A5F9-271D-9EB8-5E31-AA362D86F2C3",
 "_5B816B93-7A5F-B64C-8460-47C17D6E4B0F",
 "_67AB291F-DCCD-31B7-B499-338206B9828F",
 "_9CE150A8-8CC5-A0F9-B67E-BBD8C79D3095",
 "_C1C3E687-6FFD-C753-582B-632A27E28507"]
}

Python API function:

query_model_names(self, model_id=None)

Query

Returns results from a generic SPARQL query against one or all models.

Allowed parameters are:

	modelId (optional) - when specified it searches against that model, if empty it will search against all models

	queryString - SPARQL query, for more information see https://www.w3.org/TR/rdf-sparql-query/ See below for example.

	resultFormat – XML/JSON , The format you wish the result to be returned in. Can be either JSON or XML. Will return result bindings based on the select part of the query string. See below for example.

Example Request: goss.gridappsd.process.request.data.powergridmodel

{
 "requestType": "QUERY",
 "resultFormat": "JSON",
 "queryString": "select ?feeder_name ?subregion_name ?region_name WHERE {?line r:type c:Feeder.?line c:IdentifiedObject.name ?feeder_name.?line c:Feeder.NormalEnergizingSubstation ?substation.?substation r:type c:Substation.?substation c:Substation.Region ?subregion.?subregion c:IdentifiedObject.name ?subregion_name .?subregion c:SubGeographicalRegion.Region ?region . ?region c:IdentifiedObject.name ?region_name}"
}

Example Response:

{
"head": {
 "vars": ["line_name" , "subregion_name" , "region_name"]
 } ,
"results": {
 "bindings": [
 {
 "line_name": { "type": "literal" , "value": "ieee8500" } ,
 "subregion_name": { "type": "literal" , "value": "ieee8500_SubRegion" },
 "region_name": { "type": "literal" , "value": "ieee8500_Region" }
 }
]
}
}

Python API function:

query_data(self, query, database_type=POWERGRID_MODEL, timeout=30)

Query Object

Returns details for a particular object based on the object Id.

Allowed parameters are:

	modelId (optional) - when specified it searches against that model, if empty it will search against all models

	objectID – mrid of the object you wish to return details for.

	resultFormat – XML/JSON , Will return result bindings based on the select part of the query string.

Example Request: goss.gridappsd.process.request.data.powergridmodel

{
 "requestType": "QUERY_OBJECT",
 "resultFormat": "JSON",
 "objectId": "_4F76A5F9-271D-9EB8-5E31-AA362D86F2C3"
}

Example Response:

{
 "head": {
 "vars": ["property" , "value"]
 } ,
 "results": {
 "bindings": [
 {
 "property": { "type": "uri" , "value": "http://iec.ch/TC57/2012/CIM-schema-cim17#Feeder.NormalEnergizingSubstation" } ,
 "value": { "type": "uri" , "value": "http://localhost:9999/blazegraph/namespace/kb/sparql#_F1E8E479-5FA0-4BFF-8173-B375D25B0AA2" }
 } ,
 {
 "property": { "type": "uri" , "value": "http://iec.ch/TC57/2012/CIM-schema-cim17#IdentifiedObject.mRID" } ,
 "value": { "type": "literal" , "value": "_4F76A5F9-271D-9EB8-5E31-AA362D86F2C3" }
 } ,
 {
 "property": { "type": "uri" , "value": "http://iec.ch/TC57/2012/CIM-schema-cim17#IdentifiedObject.name" } ,
 "value": { "type": "literal" , "value": "ieee8500" }
 } ,
 {
 "property": { "type": "uri" , "value": "http://iec.ch/TC57/2012/CIM-schema-cim17#PowerSystemResource.Location" } ,
 "value": { "type": "uri" , "value": "http://localhost:9999/blazegraph/namespace/kb/sparql#_AD650B25-8A04-EA09-95D4-4F78DD0A05E7" }
 } ,
 {
 "property": { "type": "uri" , "value": "http://www.w3.org/1999/02/22-rdf-syntax-ns#type" } ,
 "value": { "type": "uri" , "value": "http://iec.ch/TC57/2012/CIM-schema-cim17#Feeder" }
 }
]
 }
}

Python API function:

query_object(self, object_id, model_id=None):

Query Object Types

Returns the available object types in the model

Allowed parameters are:

	modelId (optional) - when specified it searches against that model, if empty it will search against all models

	resultFormat – XML/JSON /CSV, Will return results as a list in the format selected.

Example Request: goss.gridappsd.process.request.data.powergridmodel

{
 "requestType": "QUERY_OBJECT_TYPES",
 "modelId": "_4F76A5F9-271D-9EB8-5E31-AA362D86F2C3",
 "resultFormat": "JSON"
}

Example Response:

{
 "objectTypes": ["http://iec.ch/TC57/2012/CIM-schema-cim17#ConnectivityNode",
 "http://iec.ch/TC57/2012/CIM-schema-cim17#TransformerTank",
 "http://iec.ch/TC57/2012/CIM-schema-cim17#PowerTransformer",
 "http://iec.ch/TC57/2012/CIM-schema-cim17#LinearShuntCompensator",
 "http://iec.ch/TC57/2012/CIM-schema-cim17#EnergySource",
 "http://iec.ch/TC57/2012/CIM-schema-cim17#ACLineSegment",
 "http://iec.ch/TC57/2012/CIM-schema-cim17#LoadBreakSwitch",
 "http://iec.ch/TC57/2012/CIM-schema-cim17#EnergyConsumer"]
}

Python API function:

query_object_types(self, model_id=None)

Query Model

Returns all or part of the specified model. Can be filtered by object type

Allowed parameters are:

	modelId - when specified it searches against that model, if empty it will search against all models

	objectType (optional) – type of objects you wish to return details for.

	filter – SPARQL formatted filter string

	resultFormat – XML/JSON, Will return result in the format selected.

Example Request: goss.gridappsd.process.request.data.powergridmodel

{
 "requestType": "QUERY_MODEL",
 "modelId": "_49AD8E07-3BF9-A4E2-CB8F-C3722F837B62",
 "resultFormat": "JSON",
 "filter": "?s cim:IdentifiedObject.name '650z'",
 "objectType": "http://iec.ch/TC57/CIM100#ConnectivityNode"
}

Example Response:

[{
 "id": "_0F9BF9EE-B900-71C2-B892-0287A875A158",
 "http://iec.ch/TC57/2012/CIM-schema-cim17#ConnectivityNode.ConnectivityNodeContainer": "_4F76A5F9-271D-9EB8-5E31-AA362D86F2C3",
 "http://iec.ch/TC57/2012/CIM-schema-cim17#ConnectivityNode.TopologicalNode": "_AE5EDB3A-9177-AEA6-78EF-3DDBA4557D94",
 "http://iec.ch/TC57/2012/CIM-schema-cim17#IdentifiedObject.mRID": "_0F9BF9EE-B900-71C2-B892-0287A875A158",
 "http://iec.ch/TC57/2012/CIM-schema-cim17#IdentifiedObject.name": "q14733",
 "http://www.w3.org/1999/02/22-rdf-syntax-ns#type": "http://iec.ch/TC57/2012/CIM-schema-cim17#ConnectivityNode"
}]

Query Object Ids

Returns details for a particular object based on the object Id.

Allowed parameters are:

	modelId - when specified it searches against that model, if empty it will search against all models

	objectType (optional) – type of objects you wish to return details for.

	resultFormat – XML/JSON/CSV , Will return result bindings based on the select part of the query string.

Example Request: goss.gridappsd.process.request.data.powergridmodel

{
 "modelId": "_4F76A5F9-271D-9EB8-5E31-AA362D86F2C3",
 "requestType": "QUERY_OBJECT_IDS",
 "resultFormat": "JSON",
 "objectType": "LoadBreakSwitch"
}

Example Response:

{
 "objectIds": [
 "_0D2157F2-CD4D-9F68-9212-F663C472AF1C",
 "_18D43D9E-36D1-3A2C-AC8F-439232FC1EE2",
 "_323C2BDB-69AA-A10C-CEC5-628C77B83268",
 "_D7AA7B55-E700-F1E8-B3EB-CB2FB07F8A37",

]
}

Query Object Dictionary

Returns details for either all objects of a particular type or a particular object based on the object Id. Either the object type or id is required, but not both.

Allowed parameters are:

	modelId - model that you wish to return objects from.

	objectType (not required if objectId is set) – type of object you wish to return details for.

	objectId (not required if objectType is set) - mrid of the object you wish to return details for, if set this will override objectType.

	resultFormat – XML/JSON , Will return result bindings based on the select part of the query string.

Example Request: goss.gridappsd.process.request.data.powergridmodel

{
 "modelId": "_4F76A5F9-271D-9EB8-5E31-AA362D86F2C3",
 "requestType": "QUERY_OBJECT_DICT",
 "resultFormat": "JSON",
 "objectType": "LinearShuntCompensator",
 "objectId": "_EF2FF8C1-A6A6-4771-ADDD-A371AD929D5B"
}

Example Response:

{
 [
 {
 "id": "_2199D08B-9352-2085-102F-6B207E0BEBA3",
 "ConductingEquipment.BaseVoltage": "_C0A00494-BB68-7476-57E3-9741545AE287",
 "Equipment.EquipmentContainer": "_4F76A5F9-271D-9EB8-5E31-AA362D86F2C3",
 "IdentifiedObject.mRID": "_2199D08B-9352-2085-102F-6B207E0BEBA3",
 "IdentifiedObject.name": "capbank0a",
 "PowerSystemResource.Location": "_19B9D45D-F556-01D4-8094-3AE64D5E63A0",
 "LinearShuntCompensator.b0PerSection": "100",
 "LinearShuntCompensator.bPerSection": "0.0077160494",
 "LinearShuntCompensator.g0PerSection": "0",
 "LinearShuntCompensator.gPerSection": "0",
 "ShuntCompensator.aVRDelay": "100",
 "ShuntCompensator.grounded": "true",
 "ShuntCompensator.maximumSections": "1",
 "ShuntCompensator.nomU": "7200",
 "ShuntCompensator.normalSections": "1",
 "ShuntCompensator.phaseConnection": "PhaseShuntConnectionKind.Y",
 "type": "LinearShuntCompensator"
 },....
]
}

Query Object Measurements

Returns details for measurements within a model, can be for all objects of a particular type or for those connected to a particular object based on the objectId. If neither objectType or objectId is provided it will provide all measurements belonging to the model.

Allowed parameters are:

	modelId - model that you wish to return measurements from.

	objectType (optional) – type of object you wish to return measurements for.

	objectId (optional) - mrid of the object you wish to return measurements for. If set this will override objectType.

	resultFormat – XML/JSON , Will return result bindings based on the select part of the query string.

Example Request: goss.gridappsd.process.request.data.powergridmodel

{
 "modelId": "_4F76A5F9-271D-9EB8-5E31-AA362D86F2C3",
 "requestType": "QUERY_OBJECT_MEASUREMENTS",
 "resultFormat": "JSON",
 "objectType": "LinearShuntCompensator",
 "objectId": "_2199D08B-9352-2085-102F-6B207E0BEBA3"
}

Example Response:

 [
{
 "measid": "_59d526ff-32c0-4947-ab58-45f283636786",
 "type": "PNV",
 "class": "Analog",
 "name": "ACLineSegment_ln5532752-2_Voltage",
 "bus": "m1047534",
 "phases": "A",
 "eqtype": "ACLineSegment",
 "eqname": "ln5532752-2",
 "eqid": "_7A02B3B0-2746-EB24-45A5-C3FBA8ACB88E",
 "trmid": "_6B5B889C-E7E1-3444-CC63-7A589AC0DA8F"
 },....
]

Put Model

Note

Future Capability. Not yet available.

Inserts a new model into the model repository. This could validate model format during insertion Keep cim/model version in mind

Allowed parameters are:

	modelId – id to store the new model under, or update existing model

	modelContent – expects either RDF/XML or JSON formatted powergrid model

	inputFormat – XML/JSON

 Start a Simulation

Start a Simulation

Returns simulation id.

Queue:

goss.gridappsd.process.request.simulation

Example Request:

{

power_system_config: the CIM model to be used in the simulation

"power_system_config": {
 "GeographicalRegion_name": "ieee8500nodecktassets_Region",
 "SubGeographicalRegion_name": "ieee8500nodecktassets_SubRegion",
 "Line_name": "ieee8500"
},

simulation_config: the paramaters used by the simulation

"simulation_config": {
 "start_time": "2009-07-21 00:00:00",
 "duration": "120",
 "simulator": "GridLAB-D",
 "timestep_frequency": "1000",
 "timestep_increment": "1000",
 "simulation_name": "ieee8500",
 "power_flow_solver_method": "NR",

simulation_output: the objects and fields to be returned by the simulation

"simulation_output": {
 "output_objects": [{
 "name": "rcon_FEEDER_REG",
 "properties": ["connect_type",
 "Control",
 "control_level",
 "PT_phase",
 "band_center",
 "band_width",
 "dwell_time",
 "raise_taps",
 "lower_taps",
 "regulation"]
 },
 ]
},

model creation config: the paramaters used to generate the input file for the simulation

 "model_creation_config": {
 "load_scaling_factor": "1",
 "schedule_name": "ieeezipload",
 "z_fraction": "0",
 "i_fraction": "1",
 "p_fraction": "0",
 "model_state":{
 "synchronousmachines":[
 {"name":"diesel590","p":100.000,"q":140.000},
 {"name":"diesel620","p":150.000,"q":500.000}
],
 "switches":[
 {"name":"2002200004641085_sw","open":true},
 {"name":"2002200004868472_sw","open":true},
 {"name":"l9407_48332_sw","open":true},
 {"name":"tsw568613_sw","open":false}
]
 }
 }
},

application config: inputs to any other applications that should run as part of the simluation, in this case the voltvar application

"application_config": {
 "applications": [{
 "name": "vvo",
 "config_string": "{\"static_inputs\": {\"ieee8500\" : {\"control_method\": \"ACTIVE\", \"capacitor_delay\": 60, \"regulator_delay\": 60, \"desired_pf\": 0.99, \"d_max\": 0.9, \"d_min\": 0.1,\"substation_link\": \"xf_hvmv_sub\",\"regulator_list\": [\"reg_FEEDER_REG\", \"reg_VREG2\", \"reg_VREG3\", \"reg_VREG4\"],\"regulator_configuration_list\": [\"rcon_FEEDER_REG\", \"rcon_VREG2\", \"rcon_VREG3\", \"rcon_VREG4\"],\"capacitor_list\": [\"cap_capbank0a\",\"cap_capbank0b\", \"cap_capbank0c\", \"cap_capbank1a\", \"cap_capbank1b\", \"cap_capbank1c\", \"cap_capbank2a\", \"cap_capbank2b\", \"cap_capbank2c\", \"cap_capbank3\"], \"voltage_measurements\": [\"nd_l2955047,1\", \"nd_l3160107,1\", \"nd_l2673313,2\", \"nd_l2876814,2\", \"nd_m1047574,3\", \"nd_l3254238,4\"], \"maximum_voltages\": 7500, \"minimum_voltages\": 6500,\"max_vdrop\": 5200,\"high_load_deadband\": 100,\"desired_voltages\": 7000, \"low_load_deadband\": 100,\"pf_phase\": \"ABC\"}}}"
 }]
}

Subscribe to Simulation Output

Topic:

/topic/goss.gridappsd.simulation.output.[simulation_id]

Where simulation_id is response from start simulation API.

Example Message:

{
 "simulation_id" : "12ae2345",
 "message" : {
 "timestamp" : "1357048800",
 "measurements" : {
 "123a456b-789c-012d-345e-678f901a234b":{
 "measurement_mrid" : "123a456b-789c-012d-345e-678f901a234b"
 "magnitude" : 3410.456,
 "angle" : -123.456
 }
 }
}

Subscribe to Simulation Logs

Topic:

/topic/goss.gridappsd.simulation.log.[simulation_id]

Where simulation_id is response from start simulation API.

Example Message:

{
 "source": "",
 "processId": "",
 "timestamp": "",
 "processStatus": "[STARTING|STARTED|STOPPED|RUNNING|ERROR|CLOSED|COMPLETE]",
 "logMessage": "",
 "logLevel": "[INFO|DEBUG|ERROR]",
 "storeToDb": [true|false]
}

Send Input to Simulation

Topic:

/topic/goss.gridappsd.simulation.input.[simulation_id]

Example Message:

{
 "command": "update",
 "input": {
 "simulation_id": "123456",
 "message": {
 "timestamp": 1357048800,
 "difference_mrid": "123a456b-789c-012d-345e-678f901a235c",
 "reverse_differences": [{

 "object": "61A547FB-9F68-5635-BB4C-F7F537FD824E",
 "attribute": "ShuntCompensator.sections",
 "value": 1
 },
 {

 "object": "E3CA4CD4-B0D4-9A83-3E2F-18AC5F1B55BA",
 "attribute": "ShuntCompensator.sections",
 "value": 0
 }
],
 "forward_differences": [{

 "object": "61A547FB-9F68-5635-BB4C-F7F537FD824E",
 "attribute": "ShuntCompensator.sections",
 "value": 0
 },
 {

 "object": "E3CA4CD4-B0D4-9A83-3E2F-18AC5F1B55BA",
 "attribute": "ShuntCompensator.sections",
 "value": 1
 }
]
 }
 }
}

Pause Simulation

Topic:

/topic/goss.gridappsd.simulation.input.[simulation_id]

Example Message:

{
 "command": "pause"
}

Resume Simulation

Topic:

/topic/goss.gridappsd.simulation.input.[simulation_id]

Example Message:

{
 "command": "resume"
}

Resume and Pause the Simulation after a Specified Number of Seconds

Topic:

/topic/goss.gridappsd.simulation.input.[simulation_id]

Example Message:

{
 "command": "resumePauseAt",
 "input": {
 "pauseIn": 10
 }
}

 <no title>

Java

The request simulation can be called using the GOSS Client API. https://github.com/GridOPTICS/GOSS The Client API is used to send a run configuration to the GOSS simulation request topic, once the simulation has started it listens to the FNCS output topic for the simulation data.

import org.apache.http.auth.Credentials;
import org.apache.http.auth.UsernamePasswordCredentials;
import pnnl.goss.core.Client;
import pnnl.goss.core.Client.PROTOCOL;
import pnnl.goss.core.ClientFactory;
import pnnl.goss.core.GossResponseEvent;
import pnnl.goss.core.Request.RESPONSE_FORMAT;
import pnnl.goss.core.client.ClientServiceFactory;
import pnnl.goss.gridappsd.dto.PowerSystemConfig;
import pnnl.goss.gridappsd.dto.RequestSimulation;
import pnnl.goss.gridappsd.dto.SimulationConfig;
import pnnl.goss.gridappsd.utils.GridAppsDConstants;

ClientFactory clientFactory = new ClientServiceFactory();

Client client;

//Step1: Create GOSS Client
Credentials credentials = new UsernamePasswordCredentials(
 username, pw);
client = clientFactory.create(PROTOCOL.STOMP, credentials);

//Create Request Simulation object, you could also just pass in a json string with the configuration
PowerSystemConfig powerSystemConfig = new PowerSystemConfig();
powerSystemConfig.GeographicalRegion_name = "ieee8500_Region";
powerSystemConfig.SubGeographicalRegion_name = "ieee8500_SubRegion";
powerSystemConfig.Line_name = "ieee8500";

SimulationConfig simulationConfig = new SimulationConfig();
simulationConfig.duration = 60;
simulationConfig.power_flow_solver_method = "";
simulationConfig.simulation_id = ""; //.setSimulation_name("");
simulationConfig.simulator = ""; //.setSimulator("");

SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
simulationConfig.start_time = sdf.format(new Date()); //.setStart_time("");

RequestSimulation requestSimulation = new RequestSimulation(powerSystemConfig, simulationConfig);

Gson gson = new Gson();
String request = gson.toJson(requestSimulation);
//Step3: Send configuration to the request simulation topic
String simulationId = client.getResponse(request, GridAppsDConstants.topic_requestSimulation, RESPONSE_FORMAT.JSON)

//Subscribe to bridge output
client.subscribe("goss/gridappsd/fncs/output", new GossResponseEvent() {
 public void onMessage(Serializable response) {
 System.out.println("simulation output is: "+response);
 }
});

 <no title>

Python
The python API requires that you install the stomp.py package, you can do this using pip with the command pip install stomp.py For additional documentation see https://github.com/jasonrbriggs/stomp.py/wiki/Simple-Example You will need to create a stomp connection, listen to the output topic, and then send a message to start the simulation.

import json
import sys
import stomp
import time

goss_output_topic = '/queue/goss/gridappsd/fncs/output'
goss_simulation_status_topic = '/topic/goss/gridappsd/simulation/status/'
gossConnection= None
isInitialized = None
simulationId = None

class GOSSStatusListener(object):
 def on_message(self, headers, msg):
 message = ''
 print('status ',msg)
 def on_error(self, headers, msg):
 print('simulation status error ',msg)
class GOSSSimulationStartListener(object):
 def on_message(self, headers, msg):
 message = ''
 print('simulation start ', msg)
 _registerWithGOSS('system','manager', msg,gossServer='localhost',stompPort='61613')
 def on_error(self, headers, msg):
 print('simulation start error ',msg)

def _registerWithGOSS(username,password,simulationId,gossServer='localhost',
 stompPort='61613'):
 '''Register with the GOSS server broker and return.

 Function arguments:
 gossServer -- Type: string. Description: The ip location
 for the GOSS server. It must not be an empty string.
 Default: 'localhost'.
 stompPort -- Type: string. Description: The port for Stomp
 protocol for the GOSS server. It must not be an empty string.
 Default: '61613'.
 username -- Type: string. Description: User name for GOSS connection.
 password -- Type: string. Description: Password for GOSS connection.

 Function returns:
 None.
 Function exceptions:
 RuntimeError()
 '''
 if (gossServer == None or gossServer == ''
 or type(gossServer) != str):
 raise ValueError(
 'gossServer must be a nonempty string.\n'
 + 'gossServer = {0}'.format(gossServer))
 if (stompPort == None or stompPort == ''
 or type(stompPort) != str):
 raise ValueError(
 'stompPort must be a nonempty string.\n'
 + 'stompPort = {0}'.format(stompPort))
 gossConnection = stomp.Connection12([(gossServer, stompPort)])
 gossConnection.start()
 gossConnection.connect(username,password)
 gossConnection.set_listener('GOSSStatusListener', GOSSStatusListener())
 gossConnection.subscribe(goss_output_topic,1)

def _startSimulation(username,password,gossServer='localhost',stompPort='61613'):
 simulationCfg = '{"power_system_config":{"GeographicalRegion_name":"ieee8500nodecktassets_Region","SubGeographicalRegion_name":"ieee8500nodecktassets_SubRegion","Line_name":"ieee8500"}, "simulation_config":{"start_time":"03/07/2017 00:00:00","duration":"60","simulator":"GridLAB-D","simulation_name":"my test simulation","power_flow_solver_method":"FBS"}}'
 if (gossServer == None or gossServer == ''
 or type(gossServer) != str):
 raise ValueError(
 'gossServer must be a nonempty string.\n'
 + 'gossServer = {0}'.format(gossServer))
 if (stompPort == None or stompPort == ''
 or type(stompPort) != str):
 raise ValueError(
 'stompPort must be a nonempty string.\n'
 + 'stompPort = {0}'.format(stompPort))
 gossConnection = stomp.Connection12([(gossServer, stompPort)])
 gossConnection.start()
 gossConnection.connect(username,password, wait=True)
 gossConnection.set_listener('GOSSSimulationStartListener',GOSSSimulationStartListener())
 gossConnection.subscribe(destination='/queue/reply',id=2)
 gossConnection.send(body=simulationCfg, destination=goss_simulation_topic, headers={'reply-to': '/queue/reply'})
 time.sleep(3)
 print('sent simulation request')

if __name__ == "__main__":
 #TODO: send simulationId, fncsBrokerLocation, gossLocation,
 #stompPort, username and password as command line arguments

 _startSimulation('username','pw',gossServer='127.0.0.1',stompPort='61613')

 <no title>

Websockets/Javascript

In order to call the simulation API from javascript you will need to install stomp.js [http://jmesnil.net/stomp-websocket/doc/]
In order to start the simulation through the websocket API you will need to send the configuration to the gridappsd simulation topic in the format descibed on the Simulation Request page #simulation-request_

<script src='js/jquery-2.1.4.min.js'></script>
<script src="js/stomp.js" type="text/javascript"></script>
configString = "........... See developer resources"
simulationTopic = "/queue/goss/gridappsd/process/request/simulation";
gossHost = "gridappsdhost";
//Create client
var client = Stomp.client("ws://"+gossHost+":61614");
client.heartbeat.incoming=0;
client.heartbeat.outgoing=0;

var connect_error_callback = function(error) {
 $("#debug").append("Error "+error + "\n");
};
var outputCallback = function(message){
 $("#debug").append("Output "+message.body + "\n");
}
//Make connection with server
client.connect("username", "pw", connect_callback, connect_error_callback);

var request = JSON.stringify(JSON.parse(configField));
client.send(simulationTopic, {"reply-to" :"/temp-queue/response-queue"}, request);
 client.subscribe("/temp-queue/response-queue", function(message) {
 var simulationId = JSON.parse(message.body);
 $("#debug").append("Received Simulation ID: " +simulationId + "\n");
 client.subscribe("/topic/goss/gridappsd/simulation/status/"+simulationId, statusCallback);
 });
client.subscribe("/topic/goss/gridappsd/fncs/output", outputCallback);

 Query Request Queue

The Timeseries Data API allows you to query the timeseries data such as weather, simulation output and input.

Query Request Queue

Query request should be sent on following queue: goss.gridappsd.process.request.data.timeseries

Query Weather data

Example Request:

{"queryMeasurement":"weather",
"queryFilter":{"startTime":"1357048800000000",
 "endTime":"1357048860000000"},
"responseFormat":"JSON"}

Example Response for result format JSON:

{ "data": [{ "Diffuse": 2.5305959999999996,
 "AvgWindSpeed": 0,
 "TowerRH": 70.65,
 "long": "105.18 W",
 "MST": "08:00",
 "TowerDryBulbTemp": 16.124,
 "DATE": "1/1/2013",
 "DirectCH1": 0.08549150370000001,
 "GlobalCM22": 2.53962588,
 "AvgWindDirection": 0,
 "time": 1357048800,
 "place": "Solar Radiation Research Laboratory",
 "lat": "39.74 N" },
 { "Diffuse": 2.6431350599999996,
 "AvgWindSpeed": 0,
 "TowerRH": 70.41,
 "long": "105.18 W",
 "MST": "08:01",
 "TowerDryBulbTemp": 15.908,
 "DATE": "1/1/2013",
 "DirectCH1": 0.045951777299999996,
 "GlobalCM22": 2.6501118499999996,
 "AvgWindDirection": 0,
 "time": 1357048860,
 "place": "Solar Radiation Research Laboratory",
 "lat": "39.74 N" }],
 "responseComplete": true,
 "id": "1998314042" }

Allowed values for queryFilter are:

startTime[epoch number]
endTime[epoch number]
AvgWindDirection[number]
AvgWindSpeed[number]
Diffuse[number]
DirectCH1[number]
GlobalCM22[number]
MST[number]
TowerDryBulbTemp[number]
TowerRH[number]
lat[string]
long[string]
place[string]

Query Simulation Data

Returns simulation input or output data based on query filters

Example Request:

{"queryMeasurement": "simulation",
"queryFilter": {"simulation_id": "582881157"},
"responseFormat": "JSON"}

Example Response for result format JSON:

{
"data": { "measurements": [{ "name": "simulation",
 "points": [{ "row": { "entry": [
 { "key": "hasMeasurementDifference", "value": "FORWARD" },
 { "key": "hasSimulationMessageType", "value": "INPUT" },
 { "key": "difference_mrid", "value": "c65d4ba9-8689-4838-970c-2983b54ed2e6" },
 { "key": "simulation_id", "value": "582881157" },
 { "key": "time", "value": "1562614884" },
 { "key": "attribute", "value": "ShuntCompensator.sections" },
 { "key": "value", "value": "0.0" },
 { "key": "object","value": "_5405BE1A-BC86-5452-CBF2-BD1BA8984093" }]}},
 { "row": { "entry": [
 { "key": "hasMeasurementDifference", "value": "FORWARD" },
 { "key": "hasSimulationMessageType", "value": "INPUT" },
 { "key": "difference_mrid", "value": "c65d4ba9-8689-4838-970c-2983b54ed2e6" },
 { "key": "simulation_id", "value": "582881157" },
 { "key": "time", "value": "1562614884" },
 { "key": "attribute", "value": "ShuntCompensator.sections" },
 { "key": "value", "value": "0.0" },
 { "key": "object", "value": "_8D0EAC3F-AD56-C5A6-ED03-863DBB4A8C5F"}]}}
"responseComplete": true,
"id": "1927836780" }

Allowed values for queryFilter are:

Both input and output message type:
starttime [number]
endtime [number]
measurement_mrid [string] or [array of string values]
simulation_id [string]
hasSimulationMessageType ["OUTPUT" | "INPUT"]

Ouput message type:
angle [number]
magnitude [number]

Input Message type:
hasMeasurementDifference ["FORWARD" | "REVERSE"]
attribute [string]
difference_mrid [string]
object [string]
value [number]

Please find some sample requests with various query filters

{"queryMeasurement": "simulation",
"queryFilter": {"simulation_id": "582881157", "hasSimulationMessageType": "INPUT"},
"responseFormat": "JSON"}

{"queryMeasurement": "simulation",
"queryFilter": {"simulation_id": "582881157", "angle": 23.706919634782313},
"responseFormat": "JSON"}

{"queryMeasurement":"simulation",
"queryFilter":{"simulation_id":"1743450224",
"measurement_mrid":["_01625641-d9ae-4c34-8302-69a9620ec69d","_ffd6abc7-159d-4f6d-868b-7bf7b087ab85"]},
"responseFormat":"JSON"}

Query Sensor Service Data

Returns output of sensor sensor service.

Example Request:

{"queryMeasurement": "gridappsd-sensor-simulator",
"queryFilter": {"simulation_id": "582881157"},
"responseFormat": "JSON"}

Example Response for result format JSON:

{
 "data": {
 "measurements": [
 {
 "name": "gridappsd-sensor-simulator",
 "points": [
 {
 "row": {
 "entry": [
 {
 "key": "instance_id",
 "value": "gridappsd-sensor-simulator-1564186315783"
 },
 {
 "key": "hasSimulationMessageType",
 "value": "OUTPUT"
 },
 {
 "key": "measurement_mrid",
 "value": "_0009caa4-23ef-41b9-9db7-624f3f47460c"
 },
 {
 "key": "angle",
 "value": "-152.44531328865978"
 },
 {
 "key": "magnitude",
 "value": "2470.4939175057075"
 },
 {
 "key": "simulation_id",
 "value": "1512566584"
 },
 {
 "key": "time",
 "value": "1564186297"
 }
]
 }
 },.........]}]
 },
 "responseComplete": true,
 "id": "597021681"
}

Allowed values for queryFilter are:

starttime [number]
endtime [number]
measurement_mrid [string]
simulation_id [string]
instance_id
angle [number]
magnitude [number]
value [number]

 <no title>

The weather data is based on exported data collected from the Solar Radiation Research Laboratory (39.74N,105.18W,1829 meter elevation) January - December 2013. The original dataset was based in Mountain Standard Time (MST).

The original column names included engineering units, but could not be included on the import. Below is a mapping between the exported column headers and the fields in the Influx database management system.

Original Exported Data Influx Measurement Field Key Field Type
------------------------------------ ---------------------------- ----------
DATE (MM/DD/YYYY) DATE String
MST MST String
Global CM22 (vent/cor) [W/ft^2] GlobalCM22 Float
Direct CH1 [W/ft^2] DirectCH1 Float
Diffuse CM22 (vent/cor) [W/ft^2] Diffuse Float
Tower Dry Bulb Temp [deg F] TowerDryBulbTemp Float
Tower RH [%] TowerRH Float
Avg Wind Speed @ 42ft [MPH] AvgWindSpeed Float
Avg Wind Direction @ 42ft [deg from N] AvgWindDirection Float

Original Exported Data Influx Measurement Tag Type
------------------------------------ ---------------------------- ----------
n/a lat String
n/a long String
n/a place String

Influx database details:

Database name: “proven”, Measurement name: “weather”

 Installing GridAPPS-D

Installing GridAPPS-D

Clone the GridAPPS-D Repository

Clone the GridAPPS-D GitHub repository

git clone https://github.com/GRIDAPPSD/gridappsd-docker

[image: git-clone-gapps]

Install Docker

The GridAPPS-D repository includes a Docker installation script. This script only works for native linux environments (not WSL2).

Change directories into gridapps-docker and run the Docker installation script

	cd gridappsd-docker

	./docker_install_ubuntu.sh

[image: install-docker]`

Install GridAPPS-D

After Docker finishes installing, log out or restart the Ubuntu session.

After logging back in, change directories into gridappsd-docker and start the latest stable version of the GridAPPS-D platform, which will automatically download the required docker containers.

	cd gridappsd-docker

	./run.sh

To install a particular release, specify the release tag using the -t option:

	./run.sh -t develop – Install latest develop version with beta features

	./run.sh -t releases_2021.04.0 – Install April 2021 release

	./run.sh -t releases_2020.09.0 – Install September 2020 release

[image: install-2020.09]

Wait for the docker containers to finish downloading. This will take a while due to the package size.

[image: pull-containers]

When the containers have finished downloading and installing, start the GridAPPS-D Platform

	./run-gridappsd.sh

[image: run-gapps]

The GridAPPS-D platform is now installed and running.

To confirm, open localhost:8080 [http://localhost:8080/] to access the GridAPPS-D Viz

[image: localhost-8080]

[image: gridappsd-logo]

 Installing GridAPPSD-Python and Notebook Tutorials

Installing GridAPPSD-Python and Notebook Tutorials

Quick Installation

Clone the GridAPPSD-Training Repository and run the ./install.sh script

	git clone https://github.com/GRIDAPPSD/gridappsd-training.git

	cd gridappsd-training

	./install.sh

Accept the user terms for Miniconda and Jupyterlab.

After completion, the JupyterLab server will be running in a virtual environment with the training notebooks

Open the notebook titled Start-Here.ipynb

To start the jupyter notebooks at a later time, change directories into gridappsd-training and run the ./run.sh script:

	cd gridappsd-training

	./run.sh

Manual Installation

Install Anaconda or Miniconda

If not pip is not installed, use apt-get to install it.

	sudo apt-get install python-pip

[image: python-pip]

Download the latest version of Anaconda or Miniconda and save it in the /Downloads folder:

	Use Python 3.8 install for 64-bit systems from the Conda.io website [https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh].

	Use Python 3.7 install for 32-bit systems from the Conda.io website [https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86.sh]

Install Miniconda using bash

	cd /Downloads

	bash Miniconda3-latest-Linux-x86_64.sh

[image: bash-miniconda]

Follow the prompts on the installer screens. If you are unsure about any setting, accept the defaults. You can change them later. To make the changes take effect, close and then re-open your terminal window.

Test your installation. In your terminal window or Anaconda Prompt, run the command conda list. A list of installed packages appears if it has been installed correctly

Install GridAPPSD-Python

Use pip to install GridAPPSD-Python, which is need to pass API Calls to GridAPPS-D platform using the GridAPPSD-Python library methods:

	pip install gridappsd-python

Install Jupyter Lab

Use pip to install Jupyter Lab, which is need to open and execute the Python Training Notebooks:

	pip install jupyterlab

[image: Screenshot%20from%202020-11-01%2015-24-36.png]

Download Python Notebooks

The Jupyter / iPython training notebooks are the source materials for the GridAPPS-D ReadTheDocs website.

The notebooks include all the code examples and sample app materials in a format that can connect to a local GridAPPS-D platform session and interact in real-time with simulations in real-time.

Clone the python notebooks in the GridAPPSD-Training repository by running

	git clone https://github.com/GRIDAPPSD/gridappsd-training

By default, the notebooks will be saved in the directory gridappsd-training

[image: notebook-platform-interaction]

Clone the python notebooks in the GridAPPSD-Training repository by running

	git clone https://github.com/GRIDAPPSD/gridappsd-training

Start the Jupyter notebooks running on port 8890 (to avoid port sharing conflict with the GridAPPS-D Blazegraph database container):

jupyter notebook --port 8890

If running on a remote server (e.g. AWS cloud or university / laboratory server farm), start the notebooks by running

jupyter notebook --port 8890 --no-browser --ip='0.0.0.0'

Port Sharing between GridAPPS-D and Jupyter

By default, both Jupyter and the GridAPPS-D Blazegraph database use port 8889. If a Jupyter notebook is already running on port 8889, the Blazegraph database container will fail to start.

It is recommended to specify manually that Jupyter run on a different port:

jupyter notebook --port 8890

[image: gridappsd-logo]

 <no title>

404: Not Found

_images/config_test_service.png
I

GridAPPS-D ote:develo

Power System Configuration Simulation Configuration Application Configuration Test Configuration Service Configuration

soe

Available Services Select one ormore v

fncs.

gridappsd-sensor-simulator

gridappsd-voltage-violation

helicsgossbridge

example_service

GridLAB-D

gridappsd-alarms

Close

_images/config_test_upload.png
Test Configuration

GridAPPS-D
Event Tag m3mzadnda5
Event Type O CommOutage O Fault

® Open
« > v
Organize ~

2013-07-14 08:10:00 | 2013-07-14 09:00:00

CommOutage Fault

4 MW < 01Blu.. > Eval Events >

New folder
Name

R oid

A Event 1 Switch 1json
A Event 1 Switch 2json
A Event 1 Switch 3json
4 Event 2json

- om 2
Date modified

6/25/2021 1:42 PM
6/25/2021 1:42 PM
6/25/2021 1:43 PM
6/25/2021 1:43 PM
2/12/2021 2:00 PM

File name: | Event 1 Switch 2json

| [custom Fites (+jsonztextoa) |

Cancel

Open *

_images/config_test_input_outage1.png
Test Configuration

)1

Connected

A

‘TapChanger.step

GridAPPS-D
Event Tag gzmzewndg2
Event Type (&) CommOutage) Fault
. yimjezntm2
Start Date Time 2021-07-07 14:15:52
YYYY-MM-DD HHMM:SS
Stop Date Time 2021-07-07 14:17:52
YYYV-MM-DD HHMM:SS
Input Outage List
All Input Outage a
Equipment Type Capacitor v
Name ‘capbankia v
Phases A v
Attribute ShuntCompensa... v
8333 48332 sw AB
Output Outage List
All Ouput Outage a
Equipment Type Selectanoplion v

—_—

_images/config_test_output_outage.png
GridAPPS-D

Test Configuration

. yimjezntm2 Regulator feeder_reg3a A | TapChangerstep

Equipment Type Capacitor v
Name ‘capbankia v
Phases A v
Attribute ShuntCompensa... v
®

@ | swien a333_48332 5w AB

Output Outage List

All Ouput Outage a
Equipment Type SynchronousMa... v
Equipment Name diesel620 (A) v
Phases A v
Measurement Type PNV v
®

@ | everoconsumer | 20030820 51

e o

_images/copy_sim_id.png
GridAPPS-D

788904278

remote:develop

Simulation

p N

Simulation is starting.

[cottotpoon |

MINIAVERAGE/MAX VOLTAGES

_images/switch_app_viz_interaction.gif
24-GridAPPS-D-Application-Str. X+ ° GridAPPS-D x +)

LCYR9 €O - | = C O A

Readinglist {ii Apps Reading st

54.212.138.13: o Q % & 2

remote:develop

File d View Insert C Kernel Help
all+1s By fn [C Simulation ID 242488458 W n e ~ = e
No response from GridAPPS-D Platform back to Application e ;o
The GridAPPS-D Platform does not provide any response back to the application after processing the difference message and e
implementing the new equipment control setpoint. & oo

o P
T | » |

8.2. Sample App Code

Equipment Command Sample App Code

Below is an example of an app code block

. . @ ErergyConsumer p EnergyConsumer q
In [*]: M import time
from gridappsd import DifferenceBuilder @ satteryp) (@ Batteyq Solar p

from gridappsd.topics import simula Solarg

input_topic = simulation_input_topic(vi

my_open_diff = DifferenceBuilder(v.
my_open_diff.add_difference(sw_mrid,

A .
age = my_open_diff.get_message() vor
A | 2521.34055169131942
diff = DifferenceBuilder(viz_simulation_id) e
my_close_diff.add_difference(sw_mrid, "Switch.open”, 0, 1) # ST o
close_message = my_close diff.get_message() e
while True:
time.sleep(5)
d(input_topic, open_message)
sleep(s))
d(input_topic, close message) -
switches at time 1627515804 is 2
8.3. Viewing Application Results in GridAPPS-D Viz
Return to the browser tab in which the GridAPPS-D Simulation is currently running. Switch sw5 will now be opening and
closing every 5 seconds, with the downstream portion of the feeder being de-energized and reconnected with each switch
operation.
S FATAL | ERROR | @ WARN | @ INFO | © DEBUG | @ TRACE

£43PM
7/28/2021

_images/copy_sim_id1.png
GridAPPS-D

788904278

remote:develop

Simulation

p N

Simulation is starting.

[cottotpoon |

MINIAVERAGE/MAX VOLTAGES

_images/test_config.png
Event Tag

Event Type

o

Input Outage List

All Input Outage

Equipment Type
Name
Phase

Attribute

Output Outage List

All Ouput Outage

mc4xntq0

(® CommOutage

O

Select one option

Select one option

Select one or more

Select one option

v

v

v

v

QO Fault

Test Configuration

_images/tc.png
GridAPPS-D - Mozilla Firefox

Test Conﬂguran%n

Event Tag

Event Type

€ < Upload event file

kSmzednjq1

() CommOutage

1373814120

CommoOutage Fault

1373817600

_24A93B95-B674-4451-8670-35391D5F51F0

Switch.open

_images/ubuntu_clone_training.png
(base) demo_user@deno-session:~$ git clone https://github.com/GRIDAPPSD/gridappsd-training.gitll

_images/ubuntu_bash_miniconda.png
$ cd Downloads

demo_user@demo-session
/Downloads$ bash Miniconda3-latest-Linux-x86_64.shll

demo_user@deno-session

_images/ubuntu_install_docker.png
demo_user@deno-session
demo_user@deno-session

$ cd gridappsd-docker
/aridappsd-docker$./docker_install_ubuntu.shll

_images/ubuntu_git_clone_gapps.png
©®© demo_user@demo-sessior
demo_user@demo-session:~$ git clone https://github.com/GRIDAPPSD/gridappsd-dockerll

_images/ubuntu_localhost.png
GridAPPS-D x

@ localhost:8080

Usemame system

_images/ubuntu_install_release.png
©© O demo_user@demo-session: ~/gridappsd-docker

demo_user@demo-session:~$ cd gridappsd-docker
demo_user@demo-session:~/gridappsd-docker$./run.sh -t releases_2020.09.6f

_images/switch1.png
DNP3

.
Mognituge

5000
10000
20000
10000

T SR SR S

R G i e

_images/start.png
Events

Simulation

a
o
[}
>
@
°
=
n
o
o
<
8
=
(O]

%}
3
2
@
pud
(%]
c
o
2
L
=]
E
w

_images/config_test_fault1.png
n

Connected

L

2021-07-14 08:05:00 | 2021-07-14 09:00:00

GridAPPS-D
Test Configuration
Event Tag u3ntazndm3
CommoOutage Command
Event Type () CommOutage
Equipment Type PowerTransformer
Name feeder_regta (A)
Phases A
F_hase Connected Fault g e ind
Kind
Start Date Time 2021-07-14 08:30:00
'YYYY-MM-DD HH:MM:SS
Stop Date Time 2021-07-14 14:00:00
YYYY-MM-DD HHMM:SS
Impedance
rGround 0.01
XGround 001

_images/config_test_input_outage.png
Test Configuration

)1

Connected

A

‘TapChanger.step

GridAPPS-D
Event Tag gzmzewndg2
Event Type (&) CommOutage) Fault
. yimjezntm2
Start Date Time 2021-07-07 14:15:52
YYYY-MM-DD HHMM:SS
Stop Date Time 2021-07-07 14:17:52
YYYV-MM-DD HHMM:SS
Input Outage List
All Input Outage a
Equipment Type Capacitor v
Name ‘capbankia v
Phases A v
Attribute ShuntCompensa... v
8333 48332 sw AB
Output Outage List
All Ouput Outage a
Equipment Type Selectanoplion v

—_—

_images/config_test_dict.png
@ GridAPPS-D x +

« >
i Apps

CcC 0 A Notsecure | 54.212.138.13:8080

GridAPPS-D

Test Configuration

- X

* R 2
[E Reading list
1

Fetching model dictionary...

Close -

_images/config_test_fault.png
n

Connected

L

2021-07-14 08:05:00 | 2021-07-14 09:00:00

GridAPPS-D
Test Configuration
Event Tag u3ntazndm3
CommoOutage Command
Event Type () CommOutage
Equipment Type PowerTransformer
Name feeder_regta (A)
Phases A
F_hase Connected Fault g e ind
Kind
Start Date Time 2021-07-14 08:30:00
'YYYY-MM-DD HH:MM:SS
Stop Date Time 2021-07-14 14:00:00
YYYY-MM-DD HHMM:SS
Impedance
rGround 0.01
XGround 001

_images/sim_select_switch.png
GridAPPS-D

1928132599

remote:develop

Simulation

Simulation Status @

Connected

MIN/AVERAGE/MAX VOLTAGES

Timestamp 201307-14 08:11:29

“Total voltage violations 4940

Violations at 0 3530

0.9

0.8

0.7+

0.6

0.5

0.4

0.3

0.2

0.1

x|

| FATAL| ERROR | @ WARN | @ INFO | = DEBUG | ® TRACE

LOAD DEMAND
EnergyConsumer p) EnergyConsumer q) Battery p)

KVA

11,000
10,000
9,000
8,000

_images/sim_post_event.png
GridAPPS-D remote:develop

=

Simulation Status @ —

R,

P)

-

‘FA%AL\.ERROR\.WARN\.NFO\

20130714 08:10:14

“Total voltage violations

4903

3530

DEBUG | @ TRACE

Connected

MIN/AVERAGE/MAX VOLTAGES

09

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

LOAD DEMAND

EnergyConsumer p) EnergyConsumer q) Battery p)

KVA
14,000
12,000

P

_images/sim_simulation_tab_2.png
f

=— GridAPPS-D remote:develo
- 2 Pause Sto p Connected
SimulationID = 1198440679 Simulation nm e ~ (MIN/AVERAGE/MAX VOLTAGES
1 \.\ ﬂ\: gAverage\\ \.\ Max
Simulation ID .
'
=
0.99 4
0.98 4
- 0.97 4
i Timestamp 2013-07-14 08:08:44 096
Total vottage violations 3981 0.95
Violations at 0 0 0.944
0934
Voltage 02
..... 0914
Violations aod
View / Hide = e
o O \-J 0 e D H 0
Log Messages ; & @ @ F (P
Simulation Status &Y FATAL | ERROR | @ WARN | @ INFO | © DEBUG | @ TRAce | |LOAD DEMAND

incrementing to 48

incrementing to 47

Expand Log
Details

Next Log
Message Page

(@ Energyconsumerp) (@ EnergyConsumerq) (@ Batteryp)

[EEDX EEDE EZD)

KVA

14,000 o

12,000

10 000

_images/sim_simulation_tab.png
GridAPPS-D remote:develop

Simulation Events Applications

LOAD DEMAND
(@ EneroyConsumerp) (@ EnergyConsumerq) (@ Batteryp)

L2

_images/sim_view_equip_name.png
GridAPPS-D remote:develop t‘

I . . . MIN/AVERAGE/MAX VOLTAGES

oL
099
098
- 097
2013.07-14 0809:14 096
4010 095
o 094
- 093
.—3@4 092
BN 091
09

0895 T T T

& &

EnergyConsumer p) EnergyConsumer q) Battery p)

'\\‘Ig(f)f—. < .
"?‘F) |

&3\ LOAD DEMAND
/ﬁ:}

L2
V;\g 14,000

12,000

Simulation Status @ . FATAL | ERROR | @ WARN | @ INFO | = DEBUG | @ TRACE

P P

_images/sim_start_message.png
= GridAPPS-D remote:develop f‘

Connected

. . MIN/AVERAGE/MAX VOLTAGES
& =

oo

*
4
3 1
Simulation Status & ° 1 ° | . FATAL| ERROR | @ WARN | @ INFO | = DEBUG | ® TRACE | |LOAD DEMAND
3 : ASEFEFAC224""G hicalR @ Erewyconsumerp) (@ EnergyConsumera) (@ Batteryp) (@ Batterya) (@ Solarp) (@ Soiara

‘gov.pnnl.goss.gridappsd.service ServiceManagerimpl .

1411264839 114"/

1628040768445 7

Starting service with command python /gridappsd/services/helicsgossbridge/service/helics_goss_bridge.py 1411264839 51

_images/simulations.png
GridAPPS-D - Mozilla Firefox o

! Bl simulations l

Applications & Services

Browse Data

Q
[Stomp Client
(0}

Log Out

_images/simulation.png
a Simulations

= Applications & Services
L] Stomp Client

_images/sim_open_switch.png
GridAPPS-D remote:develop

1928132599

Simulation .

Simulation Status @

20130714 08:11:59

4940

3530

/—x
%\ L

%ﬂc =
S Yy
g

| FATAL| ERROR | @ WARN | @ INFO |

MIN/AVERAGE/MAX VOLTAGES

0.9

0.8

0.7+

0.6

0.5

0.4

DEBUG | @ TRACE

LOAD DEMAND
EnergyConsumer p) EnergyConsumer q) Battery p)

KVA

10,000

8,000

_images/sim_open_plot.png
GridAPPS-D remote:develop

Simulation

Simulation Status @

ey

‘ Edit plots ‘ .

2013-07-14 08:01:44

4127

-

~ FATAL | ERROR | @ WARN | @ INFO |

DEBUG | @ TRACE

Connected

MIN/AVERAGE/MAX VOLTAGES

0.99 -
0.98

0.97 -
0.96 -

0.95
0.94
093
092
091

0.9
089

LOAD DEMAND
(@ EreroyConsumerp) (@ EnerayConsumerq) (@ Battery p)

_images/sim_plot_results.png
= GridAPPSD remote:develop

Simulation . ‘ ‘ ‘ L
\/

2013-07-14 08:14:44

5830

Simulation Status @

S

EH;i % ¥ ﬁ
T Z 2l R Y

. FATAL | ERROR | @ WARN | @ INFO | = DEBUG | @ TRACE

Connected
& & & P
115KV XFMR (MAGNITUDE)

(@ vm115.695ub (%)) (@ hvmvi15_69sub ()

hvmy115_69sub (C)

w

2,900,000 5
2,800,000 -
2,700,000 -
2,600,000 -
2,500,000 -
2,400,000 -
2,300,000 -

2,200,000 -

2,100,000 -
2,000,000 .

e]
8 3
o\

T
o

&

STEAM GEN 1 (MAGNITUDE)

(@ n5002chp-1 (A)) (@ In5002chp-1 B)) (@ 1n5002chp-1 (C))

w
-

_images/win_setup_clone_gapps.png
@ demo_user@DESKTOP-06IFQ2M: ~

0 run a command as administrator (user "root”), use "sudo <command>".
"man sudo_root” for details.

demo_user@DESKTOP-661FQ21:~$ git clone https://github.com/GRIDAPPSD/gridappsd-docker,

_images/win_setup_containters_pulled.png
@ gridappsd@a9b49bfTadat: /gridappsd

Pulling sample_app ... done
Pulling proven . done
Pulling influxdb . done

Starting the docker containers

done
done
done
done
done

starting gridappsd-docker_mysql_1
Starting gridappsd-docker_blazegraph_1
starting gridappsd-docker_influxdb_1
starting gridappsd-docker_redis_1
starting gridappsd-docker_proven_1
starting gridappsd-docker_gridappsd_1 done
starting gridappsd-docker_viz_1 done
Starting gridappsd-docker_sample_app_1 ... done

Getting blazegraph status
Checking blazegraph data
Blazegrpah data available (1958170)
Getting viz status

Containers are running

Connecting to the gridappsd container
docker exec -it gridappsd-docker_gridappsd_1 /bin/bash

gridappsd@aobaobf7ada:

r'gridappsd$

_images/win_setup_containers_starting.png
Docker is starting . Docker Desktop is running

Linux Containers WSL 2 backend is Open Powershell and start hacking
starting. with docker or compose
Docker Desktop Docker Desktop

EY

T1:34PM & 3 o) p
Ao m B P B

oD 1z B

_images/win_setup_enable_VM.png
Windows Powershell
Copyright (C) Microsoft Corporation. ALl rights reserved.

PS.

Windows\systen32> dism.exe /online /enable-feature /featurename:Microsoft-Windows-Subsystem-Linux /all /norestart

Deployment Image Servicing and Management tool
Version: 10.0.17763.1

Inage Version: 16.6.17763.379

Enabling feature(s)

00, 0%-
The operation completed successfully.
PS C:\Windows\system32> dism.exe /online /enable-feature /featurename:VirtualMachinePlatform /all /norestarty

_images/win_setup_docker_wizard.png
© Installing Docker Desktop 2.40.0 (48506)

Configuration

Install required Windows components for WSL 2
[I’Add shortcut to desktop.

_images/win_setup_goodbad_winver.png
About Windows

Microsoft Windows
Version 1809 (0 Buid 17763.375)
© 2018 Microsoft Corporation. Al rights reserved.

The Windows 10 Home operating system and it user interface are
protected by trademark and other pending or existing nteliectual property.
fights in the Urited States and other countris/fegions.

This product i icensed under the
to:

Microsoft Windows
Version 2004 (05 Buid 13041.572)
© 2020 Microsolft Corporation. Al rights reserved.

The Viindows 10 Education operating system and s user nterface are
protected by trademark and other pending or existng nteliectual property.
fights in the Urited States and other countris/fegions.

This product i icensed under the
to:

_images/win_setup_enable_wsl2.png
Administrator: Windows PowerShell

Windows Powershell ~
Copyright (C) Microsoft Corporation. ALl rights r

PS C:\Windows\system32> Jonline /enable-featurs

/eeatu tart

rename :Microsoft-windows-Subsysten-Linux /all /nor

_images/win_setup_install_jupyter.png
I Anaconda Prompt (Miniconda3)

(base) C:\Users\EEEER>pip install jupyterlab

_images/win_setup_install_gapps_python.png
™ Anaconda Prompt (Miniconda3) — [m]

(base) C:\Users\EEEml>pip install gridappsd-python,
!

_images/win_setup_launch_miniconda.png
uments More v

Best match

I Anaconda Prompt (Miniconda3)
App

Apps

B Anaconda Powershell Prompt
(Miniconda3)

Search the web

£ anaconda

Documents (4+)

£ anacondd

o
[}
=
=
m

Anaconda Prompt (Miniconda3)

Open
Run as administrator
Openfile location
Pin to Start

Pin to taskbar

Uninstall

_images/ubuntu_py_install.png
©© demo_user@demo-session: ~/gridappsd-training

(base) :~5 cd gridappsd-training/
(base) :~/gridappsd-training$./install.shl]

_images/ubuntu_pull_containers.png
©© O demo_user@demo-session: ~/gridappsd-docker

demo_user@deno-session:~$ cd gridappsd-docker
demo_user@demo-session:~/gridappsd-docker$./run.sh -t releases_2020.09.0

Getting blazegraph status

Pulling updated containers

Pulling redis (redis:3.2.11-alpine)

3.2.11-alpine: Pulling from library/redis

Digest: sha256:ebf1948b84dcaaadfsa2849cce6f2548edb8862e2829e3e7d9e4cd5a324fb3b7
Status: Image is up to date for redis:3.2.11-alpine

Pulling influxdb (gridappsd/influxdb:releases_2020.09.0). ..

releases_2020.09.0: Pulling from gridappsd/influxdb

0400ac8f7460:
fag559aa5ebb:
da32bfbbc3ba:
2107148596b1:
dbaf998976a3:
6b778e6196d2:
©32f0180a33f:
b9b93617de21:
b835d1574dff:
cede46c93a91:
ab11c614059b:
21868636b2ee:

Downloading 1 2.784MB/45.37MB
Downloading 1 2.763MB/10.75MB
Downloading [= 1 1.85MB/4.341MB
Pulling fs layer

Waiting

Waiting

Waiting

Waiting

Waiting

Waiting

Waiting

Waiting

_images/ubuntu_run_gapps.png
Getting blazegraph status

Checking blazegraph data
Blazegrpah data available (1958486)
Getting viz status

Containers are running

Connecting to the gridappsd container
docker exec -it gridappsddocker_gridappsd_1 /bin/bash

gridappsd@d3bds3459470: /gridappsd$./run-gridappsd.s

_images/ubuntu_python_pip.png
©®© demo_user@demo-session: ~
demo_user@demo-session:~$ sudo apt install python-pipll

_images/volumes_add_service.png
N38e e

72
7
74
75

§RRB8E8IFIA

87

89

o1
02
03
01
o5

2898

gridappsd:
#image: gridappsd/gridappsd${GRIDAPPSD TAG}
image: gridappsd:local
container_name: gridappsd
ports:

#
#
#

T

Each of the following are port mappings from the host into the
container. The first three are used by GridAPPS-D for the different
protocols.

61613:61613

61614:61614

61616:61616

20000-20020:20000-20020

Uncomment to allow debugging on this port
8000: 8000
Add debugging to your application via the following port
8888:8888

working_dir: /gridappsd
environment:

#
#
#
#

PATH=/gridappsd/bin: /gridappsd/1ib: /gridappsd/services/fncsgossbridge/service: /usr/local/bin: /usr/local/sbin: /usr/sbin:/usr/bin:/sbin:/bin
LD_LIBRARY_PATH=/usr/local/lib64

X11 application support--use same display as host, typically ":0"

- DISPLAY=${DISPLAY}

Debugging is only necessary if you intend to remote debug the GridAPPS-D process iself.

Turning this on will allow the user to remote debug the gridappsd server on port 8000.

DEBUG=1

volume:

~/topology-processor/topology_processor: /gridappsd/services/gridappsd-topology-processor
~/topology-processor/topology_processor/gridappsd-topology-service. config: /gridappsd/services/gridappsd-topology-service.config
~/topology-processor/topology_processor/gridappsd-topology-daemon. config: /gridappsd/services/gridappsd-topology-daemon. config

V11 vl F et inm et chare Y11 et it it o et

_images/viz.png
GridAPPS-D - Mozilla Firefox L

Edit Plots

. . (@ hvmv_sub_hsb (4) | (@ hvmv_sub_hsb (B)
(@ hvmy_sub_hsb (C)
Magnitude

2400000

2200000]

2000000

Feeder 100,000
. 1600000

Voltage Violation Counts 3322 | | 1002
1200000

1000000
a00.000
600,000
400000
200000-]

NODAL VOLTAGE
O i0i7565 ()) (@ 1047568 (B)
@ 1047568 ()

Magnitude
7.000

6000

5000

3000

Simulation Status ~ FATAL | ERROR | @ WARN | @ INFO | DEBUG | @ TRACE 20004
[1.000

+ DEBUG

ime_window expired

s

g S
+ fncs events [909206323] Pl e

_images/win_setup_change_tags.png
lemo_user@DESKTOP-06IFQ2M: ~/gridappsd-docker

To run a command as administrator (user "root"), use "sudo <command>". A
See "man sudo_root" for details.

|

demo_user@ESKTOP-06IFQ2M:~$ cd gridappsd-docker

demo_usen@ESKTOP-@6IFQ2M:~/gridappsd-docker$./stop.sh -c,

_images/win_setup_WSL_wizard.png
45 Windows Subsystem for Linux Update Setup - x

Welcome to the Windows Subsystem for Linux
Update Setup Wizard

The Setup Wizard wilinstallWindows Subsystem for Linux
Update on your computer. Clck Next to continue or Cancel
to exit the Setup Wizard.

eo [T [ona

_images/win_setup_change_tags3.png
@ demo_user@DESKTOP-06IFQ2M: ~/gridappsd-docker

Removing the docker .env file

Error: unable to remove gridappsdmysql, please run the following command.
sudo rm -r gridappsdmysql

Error: unable to remove gridappsd, please run the following command.
sudo rm -r gridappsd

demo_user@DESKTOP-661FQ21:~/gridappsd-docker$ sudo rm -r gridappsd gridappsdmysql
[sudo] password for demo_user:
demo_user@DESKTOP-661FQ2M:~/gridappsd-docker$./run.sh -t releases_2021.64.8,

_images/win_setup_change_tags2.png
@ demo_user@DESKTOP-06IFQ2M: ~/gridappsd-docker

Removing the docker .env file

Error: unable to remove gridappsdmysql, please run the following command.
sudo rm -r gridappsdmysql

Error: unable to remove gridappsd, please run the following command.
sudo rm -r gridappsd

demo_user@DESKTOP-661FQ2M:~/gridappsd-docker$ sudo rm -r gridappsd gridappsdmysql.

_images/ubuntu_pip_gapps.png
(base) demo_user@deno-session:~$ pip install gridappsd-pythor

_images/DSS_Coordinate.png
Destination topic goss.gridappsd.process.request.config
Response topic /stomp-client/response-queue

Request

"configurationType": "DSS Coordinate",
"parameters": {"model_id": "_49ADS8E@7-3BF9-A4E2-CB8F-C3722F837B62"}

A wN R
-

Send request

Response 1 "{\"data\":sourcebus,200.0,400.0\ntap,0.0,0.0\nxf1,0.0,0.0\nmid,0.0,0.0\nhouse, 200.0,200.0\n680,200.0,0.0\n670,200.0,200.0\n692,250.0,100.

_images/EventClassDiagram.png
Event Classes 08/05/2022

Event Classes

Event
fauLtNRID:Sring
p———— 1o 1.-[RequestTestupdate
Tevents
occuredDateTime:Long
stopDateTime:Long
<<enumeration>>
RequestType
new_events
Fault CommOutage ‘ScheduledCommandEvent
update_events
ObjectMRID List<String> inputOutagelist:
List<ObjectMridAtributeMap> Query_events
phases:PhaseCode
outputOutagelistList<String> messige
PhaseConnectedFauLtKind: PhaseConn s
ectedFaultkind al10utputOutage:Boolean
FoultIrpedance:Hap aul Tnpedance ‘allInputOutage:Boolean DfferenceMessage
tinestamp:Long
difference mrid:String
forward_differences:List<Object>
reverse_differences:List<Object>

The RequestTestUpdate sent to the
TestManager will update a event
occuredDateTime and stopDateTime, and new
events and query the event status.

_images/DSS_Base.png
Destination topic goss.gridappsd.process.request.config
Response topic /stomp-client/response-queue

Request

"configurationType": "DSS Base",
"parameters": {"model_id": "_49ADS8E@7-3BF9-A4E2-CB8F-C3722F837B62"}

A wN R
-

Send request

Response 1 "{\"data\":clear\nnew Circuit.source phases=3 busl=sourcebus basekv=115.000 pu=1.00000 angle=30.00000 ro=0.17960 X

_images/DSS_Base_2.png
Destination topic goss.gridappsd.process.request.config
Response topic /stomp-client/response-queue

Request -

"configurationType": "DSS Base",

"parameters": {"model_id": "_49ADS8E@7-3BF9-A4E2-CB8F-C3722F837B62",
"load_scaling_factor": "1.0",

"z_fraction": @.0,

_fraction": 1.0,

"p_fraction .e",

"schedule name": "ieeezipload"}

Send request

Response 1 "{\"data\":clear\nnew Circuit.source phases=3 busl=sourcebus basekv=115.000 pu=1.00000 angle=30.00000 r0=0.17960 Xx0=0.53881 rl1=0.16038 X1

-~

0NV A WN R

_images/GridAPPS-D_narrow.png
GridAPPS-DH

_images/GridLAB_D_All.png
Destination topic goss.gridappsd.process.request.config

Response topic /stomp-client/response-queue

Request

-~

"configurationType": "GridLAB-D All",
"parameters": {
"directory

"/tmp/gridlabdsimulation/",

_ : "_49AD8E@7-3BF9-A4E2-CB8F-C3722F837B62",
"simulation_id "12345678",

"simulation_name": "mysimulation",

"simulation start time": "1518958800".

Send request

Response 1 "{\"data\":/tmp/gridlabdsimulation,\"responseComplete\":true,\"id\":\"619499025\"}"

0NV A WN R

_images/GridAPPS-D_DNP3IntegrationArchitecture.png
GridAPPS- D Server(Outstal

SurvalentONE System(Master)
PUB/SUB

_images/GridAPPS-D_Logo.png

_images/GridLAB_D_Base_GLM.png
GridAPPS-D remote:develop

Destination topic goss.gridappsd.process.request.config

Response topic /stomp-client/response-queue

Request 14
2 "configurationType": "GridLAB-D Base GLM",
3 "parameters": {"model_id": "_49ADSE®7-3BF9-A4E2-CB8F-C3722F837B62"}
4}
J
Send request
Response 1 "{\"data\":object regulator_configuration {\n name \"rcon_Reg\";\n connect_type WYE_WYE;\n\tControl MANUAL; // LINE_DROP_COMP;\n // use

_images/gapps_cntrl_c.png
@ select grdoppsd@9dedbf035545: /gridappsd

2021-67-29 21:16:22,133 Thread-39 INFO [gov.pnnl.goss.gridappsd.log. LoghanagerTnpl] - 1627593382115|gov.pnnl.goss. gridap A
psd.process .ProcessEvent | 1599433387 | RUNNING | system| INFO
process id generated with new process type

- o x

java.io.EOFException: Peer disconnected

at
at
at
at
at
at

org. fusesource
org. fusesource
org. fusesource
org. fusesource
org. fusesource
org.fusesource.

-hawtdispatch.
-hawtdispatch.
-hawtdispatch.
-hawtdispatch.
-hawtdispatch.
.hawtdispatch.

transport . AbstractProtocolCodec. read(AbstractProtocolCodec. java:331)
transport. TcpTransport .drainInbound(TcpTransport . java:716)
transport.TcpTransport$6. run(TcpTransport . java:592)

internal .NioDispatchSource$3. run(NioDispatchSource. java:269)
internal .SerialDispatchQueue. run(SerialbispatchQueue. java:106)
internal.pool.SimpleThread.run(SimpleThread. java:77)

_images/GridLAB_D_Base_GLM_2.png
Destination topic goss.gridappsd.process.request.config

Response topic /stomp-client/response-queue

Request

-~
»

"configurationType": "GridLAB-D Base GLM",
"parameters": {

_ _49AD8EQ7-3BF9-A4E2-CB8F-C3722F837B62",

"load_scaling_factor": "1.0",

"z_fraction": @.0,

"i_fraction": 1.0,

"p fraction": "@.0". L~

Send request

Response 1 "{\"data\":object regulator_configuration {\n name \"rcon_Reg\";\n connect_type WYE_WYE;\n\tControl MANUAL; // LINE_DROP_COMP;\n // use

0NV A WN R

_images/gapps_stop_sh_2.png
@ demo_user@DESKTOP-06IFQ2M: ~/gridappsd-docker - o x

at org.fusesource. hawtdispatch. internal .NioDispatchSource$3. run(NioDispatchSource. java: 209)
at org.fusesource.hawtdispatch. internal . SerialDispatchQueue. run(SerialDispatchQueue. java: 160)
at org.fusesource. hawtdispatch. internal.pool .SimpleThread. run(SimpleThread. java:77)

2021-67-29 21:16:28,561 ActiveMQ ShutdownHook INFO [org.eclipse.jetty.server.handler.ContextHandler] - stopped o.e.j.s.s

ervletContextHandler{/,null}

gridappsd@odedbfe3ssas: /gridappsds exit

exit

demo_usen@DESKTOP-@61FQ2M:~/gridappsd-docker$./stop.sh

shutting down the docker containers
Stopping gridappsd-docker_sample_app_1 .
stopping gridappsd-docker_viz_1
stopping gridappsd-docker_gridappsd_1
stopping gridappsd-docker_mysql_1
Stopping gridappsd-docker_proven_1 .
Stopping gridappsd-docker_blazegraph_1 .
Stopping gridappsd-docker_influxdb 1 ... done
Stopping gridappsd-docker_redis_1

-

done

_images/gapps_exit.png
@ gridappsd@9dedbf035545: /gridappsd - o X
at org.fusesource. hautdispatch. internal .NioDispatchSources3. run(NioDispatchSource. java:209)
at org.fusesource. hautdispatch. internal .SerialDispatchQueue. run(SerialDispatchQueue. java: 100)
at org. fusesource. hautdispatch. internal . pool.SimpleThread. run(SimpleThread. java:77)
2021-67-29 21:16:28,501 ActiveMQ ShutdownHook INFO [org.eclipse.jetty.server.handler.ContextHandler] - stopped o.e.3.s.s
ryletContextHandler(/,null}
ridappsd@odedbfo3ssas: /gridappsds exit.

_images/home.png
& > C ® localhost:8080 »* H O

GridAPPS-D develop

_images/gapps_stop_sh_3.png
@ demo_user@DESKTOP-06IFQ2M: ~/gridappsd-docker

demo_user@DESKTOP-661FQ21:~$ cd gridappsd-docker
demo_usen@DESKTOP-@61FQ2M :~/gridappsd-dockers ./stop.sh,

_images/docker_kill.png
18 demo_user@DESKTOP-06IFQ2M: ~

demo_user@DESKTOP-661FQ2M:~$ docker kill gridappsd
gridappsd
demo_user@DESKTOP-6TFQ2M:~$

_images/docker_exit.png
18 demo_user@DESKTOP-06IFQ2M: ~
demo_user@DESKTOP-661FQ21:~$ docker exec -it gridappsd /bin/bash

Eridappsmnnm(am :/gridappsds exit
xit
demo_user@DESKTOP-6TFQ2M:~$

_images/event_table.png
Power System Configuration

Simulation Configuration

Application Configuration

Test Configuration

Event Tag

Event Type

Equipment Type

Name

Phase

Attribute

Add output item

Output Outage

All Ouput Outage

mc44njez

(® CommOutage

Select an option

Select an option

Select one or more

Select an option

QO Fault

Action Event

Type

mc4xntq0

Tag Equipment

Input List

Equipment
Name

Phase

Capacitor c83 A

Event Summ:

age

Equipment

Attribute Type

ShuntCompensator.sections = EnergyConsumer

Name

s49c

Output List

Phases

Measurement
Type

PNV

_images/docker_ps.png
18 demo_user@DESKTOP-06IFQ2M: ~

demo_user@DESKTOP-061FQ2M:~$ docker ps
CONTAINER ID IMAGE coMMAND CREATED STATUS

NAMES
a08befef8ob6 gridappsd/viz:develop "docker-entrypoint.s.” 2 minutes ago Up 2 minutes
8080->8082/tCp

viz
o

_images/faults.png
Power System Configuration Simulation Configuration Application Configuration Test Configuration

Event Tag mcawmiil Event Summ,
CommOutage
Event Type O CommOutage @ Fault Action | EventTag | Equipment Type | EquipmentName | Phase | Fault Impedance | StartDate Time | Stop Date Time

o

Equipment Type Select one option Vv

Name Select one option Vv

Phase Select one or more Vv

Phase Connected Fault Kind lineToGround v |

Impedance

rGround

xGround

Start Date Time 2019-06-12 09:22:34 E

(YYYY-MM-DD HH:MM:SS)

_images/event_view.png
GridAPPS-D develop

SITETLRN 906869333

Events

CommOutage

Input List

Equipment
Type

Equipment
Name

Tag

_e45f5e32-429e-
4075-b993-
53f9cd20f630

Q0

Fault

mc4wmzil Regulator FEEDER_REG A

_67d90e73-81ac-4d99-a4b2-

85822b0df3db me4xmzk0

Capacitor

localhost:8080 |

TapChanger.lineDropX = ACLineSegment

capbank0Ob

00

Type

Equipment

1

Event Equipment Equipment e Start Date Stop Date
Type Name P Time Time

lineToGround

In6231993-

Output List

Start
Date
Time

Stop
Date
Time

Measurement
Type

2019-
06-12
09:24:23 09:26:23

2019-

Cc VA 06-12

rGround: 0.001 2019-06-12

09:24:23

2019-06-12

xGround: 0.002 09:26:23

_images/02_query_model_mrids.png
@

w2

@

Users
System User Evaluator Operator
Extemal
Vendor DMS
External Vendor
ADMS Systems
Other Sensor ais SCADA AMI Meter Historian
Data Interface Data
GridAPPS-D State Estimator Sensor Alarm Service Device Protocol
ADMS Services Simulator Services

w2

Test Manager

GridAPPS-D ADMS App
Query for Power System Model

Query for Model Measurement mRIDs
Query for Weather Data

Configure Simulation / Export Model

Process Measurements / App Core Algorithm

Subscribe to Simulation

Publish Equipment Control Commands

Query for Historical & Timeseries Data

[\
[\
[J
[|
[\
[J

Subscribe & Publish Log Messages

Configuration
File API

GridAPPS-D API PowerGrid ‘

Models API

Simulation API

‘ Logging API ‘

TCP/IP Network

Timeseries API AP

API

‘ Device Service

GOSS Message Bus

Authentication and Authorization Security Layer

Configuration

Manager

GridAPPS-D Core Services ‘ o ‘

Manager

‘ Simulation ‘

Services
Manager

Application
Manager

Logging ‘ Data Managers

Manager

IGridAPPS—D Platform

Static Data
(MysQL)

Network Models
(Blazegraph)

Graph Model
(NetworkX)

Historian
{(ProvEn / InfluxDB)

_images/02_virtualbox_wizard.png
18 Oracle VM VirtualBox 6.1.32 Setup

Custom Setup
‘Select the way you want features to be installed.

=3~ | VirtualBox USB Support
- 23~| VirtualBox Networking
! -53+| VirtualBox Bridged Netw(
53-| VirtualBox Host-Only Net|
53~| VirtualBox Python 2.x Support

Location: C:\Program Files\Oracle\VirtualBox\

Click on the icons in the tree below to change the way features will be installed.

Oracle VM VirtualBox 6.1.32
application.

This feature requires 217M8 on your
hard drive. Tt has 3 of 3 subfeatures
selected. The subfeatures require
932KB on your hard drive.

Browse.

Verson 632 ik sege <k =

_images/01_virtualbox_wizard.png
18 Oracle VM VirtualBox 6.1.32 Setup

Welcome to the Oracle VM
VirtualBox 6.1.32 Setup
Wizard

The Setup Wizard will install Oracle VM VirtualBox 6.1.32 on
your computer. Click Next to continue or Cancel to exit the
Setup Wizard.

Version 6.1.32 Next > Cancel

_images/02_login_error.png
Username system

Password Preee

There was a problem contacting the server <

_images/03_docker.png
) Terminal ~ Mar7 1

osboxes@osboxes: ~/gridappsd-docker Q - s &

osboxes@osboxes:~$ cd gridappsd-docker
osboxes@osboxe: $./docker_install_ubuntu.shll

_images/QUERY_MODEL_NAMES.png
Destination topic goss.gridappsd.process.request.data.powergridmode!
Response topic /stomp-client/response-queue

Request {

"requestType
"resultForma

"QUERY_MODEL_NAMES",
"JSON"

request

"modelNames": [

" _13AD8E@7-3BF9-A4E2-CB8F-C3722F837B62",
49AD8EQ7-3BF9-A4E2-CB8F-C3722F837B62",
4F76A5F9-271D-9EB8-5E31-AA362D86F2C3",
_503D6E20-F499-4CC7-8051-971E23D@BF79",
" _5B816B93-7A5F-B64C-8460-47C17D6E4BOF",
"_67AB291F-DCCD-31B7-B499-338206B9828F",
"_77966920-E1EC-EE8A-23EE-4EFD23B205BD",
"_9CE150A8-8CC5-AQF9-B67E-BBD8C79D3095",

Response {

_images/QUERY_OBJECT.png
Destination topic goss.gridappsd.process.request.data.powergridmode!

Response topic /stomp-client/response-queue

Request 14

2 "requestTyp "QUERY_OBJECT",
3 "modelID": 49AD8EQ7-3BF9-A4E2-CB8F-C3722F837B62",
4 "objectId" 2858B6C2-0886-4269-884C-06FA8B887319",
5 "resultFormat™: "JSON"
6}

Response e 1
11 "property": {
12 "type": "uri",
13 "value": "http://iec.ch/TC57/CIM1@e@#ConductingEquipment.BaseVoltage"
14 3,
15 "value": {
16 "type": "uri",
17 "value": "http://localhost:8889/bigdata/namespace/kb/sparql#_2A158E@C-CDO1-4A50-AEBA-59D761FCF15D"
18 }
19 3,

20 {

_images/QUERY_MODEL.png
Destination topic

Response topic

Request

Response

goss.gridappsd.process.request.data.powergridmodel

/Istomp-client/response-queue

"requestTyp "QUERY_MODEL",

"modelId": "_49AD8E@7-3BF9-A4E2-CB8F-C3722F837B62",
"resultFormat™: "JSON",

"filter": "?s cim:IdentifiedObject.name '650z'",

"objectType": "http://iec.ch/TC57/CIM1@@#ConnectivityNode"

"id": "_6C62C905-6FC7-653D-9F1E-1340F974A587",
"IdentifiedObject.mRID" _6C62C905-6FC7-653D-9F1E-1340F974A587",
"IdentifiedObject.name IEEE13",

"Substation.Region" _ABEB635F-729D-24BF-B8A4-E2EF268D8BYE",
"type": "Substation"

"id": "_04984C4D-CC29-477A-9AF4-61AC7D74F16F",
"IdentifiedObject.mRID": "_04984C4D-CC29-477A-9AF4-61AC7D74F16F",

"TAantifiadnhiart nama": "AEO-"

_images/QUERY_MODEL_INFO.png
Destination topic

Response topic

Request

Response

goss.gridappsd.process.request.data.powergridmodel

/Istomp-client/response-queue

"requestType
"resultFormat™:

"QUERY_MODEL_INFO",
"JSON"

A wN R
-

Send request

1q

2 "models": [

3 {

4 "modelName": "acep_psil",

5 "modelId" _77966920-E1EC-EE8A-23EE-4EFD23B205BD",

6 "stationName": "UAF",

7 "stationId": "_22B12048-23DF-007B-9291-826A16DBCB21",
8 "subRegionName": "Fairbanks",

9 "subRegionId": "_2F8FC9BF-FF32-A197-D541-8A2529D@4DF7"
10 "regionName": "Alaska",

>

_images/01_login.png
Username

Password

_images/QUERY_OBJECT_IDS.png
Destination topic goss.gridappsd.process.request.data.powergridmode!

Response topic /stomp-client/response-queue

Request 14
2 "requestType UERY_OBJECT_IDS",
3 "resultFormat™: "JSON",
4 "modelId" _49AD8EQ7-3BF9-A4E2-CB8F-C3722F837B62",
5 "objectType": "LoadBreakSwitch"
6}
Send request
Response {

"objectIds": [
"_2858B6C2-0886-4269-884C-06FA8B887319",
"_517413CB-6977-46FA-8911-C82332E42884"

Ou A WwN R

_images/01_query_model.png
@

w2

@

Users
System User Evaluator Operator
Extemal
Vendor DMS
External Vendor
ADMS Systems
Other Sensor ais SCADA AMI Meter Historian
Data Interface Data
GridAPPS-D State Estimator Sensor Alarm Service Device Protocol
ADMS Services Simulator Services

w2

Test Manager

GridAPPS-D ADMS App
Query for Power System Model

Query for Model Measurement mRIDs
Query for Weather Data

Configure Simulation / Export Model

Process Measurements / App Core Algorithm

Publish Equipment Control Commands

Query for Historical & Timeseries Data

[J
[|
[|
(Subscribe to Simulation]
[|
[\
[J

Subscribe & Publish Log Messages

Configuration
File API

GridAPPS-D API Simulation API

PowerGrid
Models API

‘ Logging API

TCP/IP Network

Timeseries API AP

Device Service
API

GOSS Message Bus

Co-simulator
(HELICS or FNCS)

IGridAPPS—D Platform

q g q Process Configuration Simulation Services Application Logging
GridAPPS-D Core Services Manager Manager Manager Manager ‘ Manager Manager Data Managers
v

Application

_Library Static Data

(MysQL)

Network Models
(Blazegraph)

Graph Model
(NetworkX)

Historian
{(ProvEn / InfluxDB)

_images/QUERY_OBJECT_MEASUREMENTS.png
Destination topic goss.gridappsd.process.request.data.powergridmode!

Response topic /stomp-client/response-queue

Request 14
2 "requestType"”: "QUERY_OBJECT_MEASUREMENTS",
3 "modelId": "_49AD8EQ7-3BF9-A4E2-CB8F-C3722F837B62",
4 "objectId": 517413CB-6977-46FA-8911-C82332E42884",
5 "resultFormat™: "JSON"
6}
Send request
Response 10
2 {
3
4
5
6 LoadBreakSwitch_671692_Current",
7 : "e71",
8 "phases™: "C",
9 "eqtype": "LoadBreakSwitch",
10 "egname": "671692",

_images/QUERY_OBJECT_DICT.png
Destination topic

Response topic

Request

Response

goss.gridappsd.process.request.data.powergridmodel

/Istomp-client/response-queue

{
"modelId" 49AD8EQ@7-3BF9-A4E2-CB8F-C3722F837B62",
"requestTyp: "QUERY_OBJECT_DICT",
"resultForma JSON™,
"objectType": "TransformerTank"
}

8

i _44FC5A86-A099-45B8-B847-F685C5027AFB",
"Equipment.EquipmentContainer": "_49AD8E@7-3BF9-A4E2-CB8F-C3722F837B62",
"IdentifiedObject.mRID": "_44FC5A86-A899-45B8-B847-F685C5027AFB",
"IdentifiedObject.name": "reg2",

"PowerSystemResource.Location": "_32D47459-6FDA-47C8-AE69-6F59CCCBOBES",
"TransformerTank.PowerTransformer": "_67B57539-590B-4158-9CBB-9DBA2FE6C1FO"
"type": "TransformerTank"

>

_images/01_git_clone.png
Activities () Terminal v Mar7 17:02

H osboxes@osboxes: ~ Q = - & ®

:~$ git clone https://github.com/GRIDAPPSD/gridappsd-dockerl]

_images/QUERY_OBJECT_DICT_2.png
Destination topic goss.gridappsd.process.request.data.powergridmode!

Response topic /stomp-client/response-queue

Request {
"requestType": "QUERY_OBJECT_DICT",
"modelId": 49AD8EQ@7-3BF9-A4E2-CB8F-C3722F837B62",
"objectId": 517413CB-6977-46FA-8911-C82332E42884",
"resultFormat™: "JSON"
}

Send request

id": "_517413CB-6977-46FA-8911-C82332E42884",
"ConductingEquipment.BaseVoltage": "_2A158EQC-CDO1-4A50-AEBA-59D761FCF15D",
"Equipment.EquipmentContainer"” _49AD8E@7-3BF9-A4E2-CB8F-C3722F837B62",
"IdentifiedObject.mRID": "_517413CB-6977-46FA-8911-C82332E42884",
"IdentifiedObject.name": "671692",

"PowerSystemResource.Location": "_7522F97F-CF73-4B94-BD26-B5E4E7B3ACO4",
"ProtectedSwitch.breakingCapacity": "40",

"Switch.normalOpen": "false",

Response [

_images/QUERY_OBJECT_MEASUREMENTS_2.png
Destination topic goss.gridappsd.process.request.data.powergridmode!

Response topic /stomp-client/response-queue

Request
"requestType": "QUERY_OBJECT_MEASUREMENTS",
"modelId": "_49AD8EQ7-3BF9-A4E2-CB8F-C3722F837B62",
"objectType ACLineSegment",

"resultForma "JSON™

Ou A WN R

Send request

Response

ACLineSegment_632633_Voltage",
: "633",

“phases”: "C",

"eqtype": "ACLineSegment",

"egname": "632633"

®VEONO VA WN R

i

_images/docker_delete.png
8] demo_user@DESKTOP-06IFQ2M: ~/gridappsd-docker

demo_user@DESKTOP-661FQ21:~$ cd gridappsd-docker
demo_user@DESKTOP-@61FQ2!:~/gridappsd-docker$ docker-compose down
demo_user@DESKTOP-@61FQ2M:~/gridappsd-docker$ docker rm ~F $(docker ps -a -q)
1ba211563a88

dbgf3cdoF217

££8b3bcb7b28

deno_user@DESKTOP-661FQ21:~/gridappsd-docker$ docker volume rm $(docker volume 1s -q)
4cFa5936c9354a8Cadafoaf68aeabc1b67d7d8oc721a1bFd5042a6379269b286¢C

04b438F4b507af d53011864737F23d451C5F14920C0268694bC2C 1026367076
8cd6e93236b2a27603139edbaad@acedse8007e199b09917bs8aaa733dadgs2e
84d4df65989F320625947d934853b1be11b5Fd70d42e5e6ab7902d71cobaace
8420200226875a7eC13760d2c2b854db5613C5Fda1b8ca6bbea1968ba2 Fb789
aacb25bc3a7bs7b3co3e86edalf6cacderadd11bdeads79acaces12a79d058 b
dc2ae987379758d74Fbcba7b2b54d842d2b9223172d2baad6a61bebafe6ds7c
demo_usen@DESKTOP-B61FQ2M:~/gridappsd-dockers

_images/docker_compose_pull.png
@ demo_user@DESKTOP-06IFQ2M: ~/gridappsd-docker
demo_user@DESKTOP-661FQ21:~$ cd gridappsd-docker

demo_user@DESKTOP-@61FQ2M:~/gridappsd-docker$ docker-compose pull
Pulling blazegraph ... done

Pulling redis . done

Pulling mysql

Pulling gridappsd ... done

Pulling viz . done

Pulling sample_app ... done

Pulling proven
Pulling influxdb

_images/docker_exec_ls.png
18] gridoppsd@71177f6dcob:/gridappsd

demo_user@DESKTOP-661FQ2M:~$ docker exec -it

ridappsd@71177f6dcag?: /gridappsds 1s -1
otal 52

IruXr-xr-x 2 root root 4096 Feb
iruxr-xr-x 1 root root 4096 Jan
iruXr-xr-x 2 root root 4096 Feb

-ru-r--r-- 1 root root 17 Feb

-ruxr-xr-x 1 root root 786 Feb
iruxr-xr-x 1 root root 4096 Jan

root root 4096 Feb

gridappsd gridappsd 4696 Mar
root root 148 Feb
root root 14 Jan
root root 16 Feb
root root 778 Feb
ruxe-xr-x 1 root root 2696 Feb
ruxe-xr-x 1 root root 2696 Jan
ridappsd@71177f6dcag?: /gridappsds o

-
5
]

:53

38

:53

54
ES

38

53
26

=

03
53

=)

53

23

gridappsd /bin/bash

applications
bin

conf

dockerbuildversion. txt
entrypoint.sh

include

1ib

log

requirements. txt
requirements_base. txt
run-docker.sh -> run-gridappsd.sh
run-gridappsd. sh

services

share

_images/docker_exec.png
18] gridoppsd@71177f6dcob:/gridappsd

demo_user@DESKTOP-661FQ21:~$ docker exec -it gridappsd /bin/bash ~
gridappsd@71177fedcas?: /gridappsds

_images/GridLAB_D_Simulation_Output.png
Destination topic goss.gridappsd.process.request.config

Response topic /stomp-client/response-queue

Request 14
2 "configurationType": "GridLAB-D Simulation Output",
3 "parameters": {"model_id": "_49ADS8E@7-3BF9-A4E2-CB8F-C3722F837B62",
4 "simulation_id": "506311954"}
5%
J
Send request
Response | 1, }, -
13 {
14 "name": "helics_output”,
15 "global": false,
16 "type": "string",
17 "destination": "HELICS_GOSS_Bridge_506311954/helics_output™,
18 "info": "{ \"ld_67@c\": [\"measured_power_B\", \"measured_power_C\", \"measured_power_A\"], \"xf1\": [\"ve
19 }
20 1

21|53)

_images/YBus_Export.png
Destination topic goss.gridappsd.process.request.config

Response topic /stomp-client/response-queue

Request 14

2 "configurationType": "YBus Export",
3 "parameters": {"model_id": "_49ADS8E@7-3BF9-A4E2-CB8F-C3722F837B62"}
4}
Send request

Response 14
2 "yParse": [
3 "Row,Col,G,B",
4 "1,1,510.4376587,-517.1318326",
5 "2,1,-8.5021748283,2.492573408",
6 "3,1,-3.331367201,4.189831867",
7 "4,1,-500,500",
8 "7,1,2.487667692,-0.9993153744",
9 "27,1,-1.398536869,4.482037216",
10 oSS S StToitToTs o ocosoonnne

_images/YBus_Export_2.png
Destination topic goss.gridappsd.process.request.config

Response topic /stomp-client/response-queue

Request

-~

"configurationType": "YBus Export",

"parameters": {"model_id": "_49AD8E@7-3BF9-A4E2-CB8F-C3722F837B62",
"load_scaling_factor": "2.0",
"schedule_name": "ieeezipload",
"z_fraction
"i_fraction”
"p fraction":

"yParse": [
"Row,Col,G,B",
"1,1,510.4376587,-517.1318326",
"2,1,-8.5021748283,2.492573408",
"3,1,-3.331367201,4.189831867",
"4,1,-500,500",
"7,1,2.487667692,-0.9993153744",
"27,1,-1.398536869,4.482037216",

0NV A WN R

Response

{

®VEONOUV A WN R

i

_images/STOMP_client.png
GridAPPS-D remote:develop

Destination topic goss gridappsd process request status platform

Connected

Response fopic /stomp-client/response-queue

Request IS

J csv < Json

Response

_images/STOMP_output.png
GridAPPS-D remote:develop 'l
Connected

Destination topic goss gridappsd process request data powergridmodel

Response fopic /stomp-client/response-queue

Request {"requestType": "QUERY_MODEL_NAMES", "resultFormat": "JSON"}

Response {

"modelNames": [
"_13AD8E@7-3BF9-A4E2-CB8F-C3722F837B62",
" _A49ADBE@7-3BF9-A4E2-CB8F-C3722F837B62",
" _A4F76A5F9-271D-9EB8-5E31-AA362D86F2C3",
"_5@3D6E20-F499-4CC7-8051-971E23D@BF79",
"_5B816B93-7A5F-B64C-8460-47C17D6E4BOF",
"_67AB291F-DCCD-31B7-B499-338206B9828F",
"_77966920-E1EC-EE8A-23EE-4EFD23B205BD",
" _9CE150A8-8CC5-AOF9-B67E-BBD8C79D3095" ,
" _AAE94E4A-2465-6F5E-37B1-3E72183A4E44",
"_C1C3E687-6FFD-C753-582B-632A27E28507",
"_E4@7CBB6-8C8D-9BC9-589C-AB83FBFO826D",
"_EE71F6C9-56F0-4167-A14E-7FAC71F10EAA"

_images/build_local_container.png
I8 demo_user@DESKTOP-06IFQ2M: ~/GOSS-GridAPPS-D.

demo_user@DESKTOP-06IFQ2M:~$ git clone https://github.con/GRIDAPPSD/GOSS-GridAPPS-D.git -b develop
Cloning into *GOSS-GridAPPS-D’

remote: Enumerating objects: 17767, done.

remote: Counting objects: 100% (974/974), done.

remote: Compressing objects: 106% (503/563), done.

remote: Total 17767 (delta 476), reused 668 (delta 289), pack-reused 16793

Receiving objects: 106% (17767/17767), 75.81 MiB | 27.48 MiB/s, done.

Resolving deltas: 10@% (9505/9565), done.

demo_user@DESKTOP-661FQ21:~$ cd GOSS-GridAPPS-D/

demo_usen@DESKTOP-B61FQ21:~/G0SS-GridAPPS-D$. /build-gridappsd-container

_images/config1.png
Power System Configuration

Geographical region name PNNL o

Sub-geographical region name Medium o

Line name Select one option Vv

Close

_images/YBus_Export_3.png
Destination topic goss.gridappsd.process.request.config

Response topic /stomp-client/response-queue

Request 14

2 "configurationType": "YBus Export"”,
3 “parameters”: {"simulation_id": "506311954"}
4}
Send request

Response 14
2 "yParse": [
3 "Row,Col,G,B",
4 "1,1,510.4376587,-517.1318326",
5 "2,1,-8.5021748283,2.492573408",
6 "3,1,-3.331367201,4.189831867",
7 "4,1,-500,500",
8 "7,1,2.487667692,-0.9993153744",
9 "27,1,-1.398536869,4.482037216",
10 oSS S StToitToTs o ocosoonnne

_images/ac.png
Application Configuration

Application name

WSU_restoration

_images/settings_menu.png
GridAPPS-D remote:develop

Theme
Logging

Time zone

_images/sim_alarms_tab.png
GridAPPS-D

remote:develop

Alarms

Open

1 . . 2021-07-08 12:55:46 _303713ED-BAAD-42C4-BC6D-0DBACADAD2EA In0895780_sw
2 . . 2021-07-08 12:55:46 _3D0102AA-CAF2-4B6D-AE76-A4917B67CA28 In1047pvfrm_sw
3 . . 2021-07-08 12:55:46 _60B9C35A-A7B1-4295-AA5B-7E4E21EEB082 In5001chp_sw
4 . . 2021-07-08 12:57:07 _0123E37C-99F0-4E8B-90D0-201EE800F627 In0863704_sw
5 . . 2021-07-08 12:57:16 _C862FEF8-3F5F-4461-B687-A23E51C04DB8 In0742811_sw
6 . . 2021-07-08 12:58:04 _7543DE0B-B068-4ABB-BBEF-86F89EA89CC9 In0653457_sw

Connected

MIN/AVERAGE/MAX VOLTAGES
(DN DK I

0.9

0.6

0.5

0.4

0.3

0.2

0.1

0.8
0.7+

LOAD DEMAND
(@ Erergyconsumerp) (@ EnergyConsumerq) (@ Battery p
[ETDE EEDE EZEnD

KVA

14,000
12,000

10,000

_images/sim_alarm_view_alarm.png
1928132599

GridAPPS-D remote:develop

Simulation

o

Simulation Status @

Tk

3R

~ FATAL | ERROR | @ WARN | @ INFO |

3E

DEBUG | @ TRACE

MIN/AVERAGE/MAX VOLTAGES

0.9

0.6

0.5

0.4

0.3

0.2

0.1

0.8
0.7

LOAD DEMAND
EnergyConsumer p) EnergyConsumer q) Battery p)

KVA

12,000

10,000

_images/sim_create_plot.png
GridAPPS-D

Simulation Status &%

remote:develop

Created plots

Plot name

Component type

Component

Phases

Select an option
115kv XFMR
Power

Magnitude
[] Angle

hvmv115_69sub ...

AC

i
Connected

“AAX VOLTAGES

e

v Magnitude

(%) ins002chp-1 (A)

(X) ins002chp-1 (8)

. In5002chp-1 (C)

hvmv_sub_hsb (A, B, C)
hvmv69s2s3-1 (A, B, C)
hvmve9s1s2-1 (A, B, C)

hvmv115_69sub (A, B, C) *

hvmvé69s1s2-8 (A, B, C)

hvmv69s1s2-7 (A, B, C)

@ Erergyconsumerq) (@ Battery p

arp) (@ Solarq

_images/sim_apps_tab.png
GridAPPS-D X+ o — X

€ > C 0 A Notsecure | 54.212.138.13:8080/simulation - Q % W A

Reading list

— . " .

= GridAPPS-D remote:develop H
Connected

AT “‘ MIN/AVERAGE/MAX VOLTAGES
R T S -2

. der_dispatch_app GridAPPS-D DER Dispatch Application app NREL v

solar_forecasting_app GridAPPS-D Solar Forecasting app NREL 95
099

0.98
0.97
0.96 -

0.95-
0.94 -
093
092
091
0.9
089

& & ¢

LOAD DEMAND
(@ Energyconsumerp) (@ EnergyConsumerq) (@ Battery p

C IEEDE EEDE BN

KVA

14,(xx)ﬁ

_images/sim_loading_oneline.png
GridAPPS-D remote:develop

Simulation

Simulation Status &

MIN/AVERAGE/MAX VOLTAGES
@) @rense) @)

v

LOAD DEMAND
(@ EnergyConsumerp) EnergyConsumer q) Battery p)

KVA

_images/sim_events_tab.png
—) 1,
— GridAPPS-D remote:develop 4
Connected
Events » ~ MIN/AVERAGE/MAX VOLTAGES
(DN DK I
Input List y
Action Fault MRID Event Tag
All Input Outage Equipment Type Equipment Name Phase Attribute Al Output Outage
& ‘ elmdc5ndey Capacitor capbankla A ShuntCompensator.sections ACH
Action Fault MRID Event Tag [Equipment Type Equipment Name Phase Fault Kind Fault Impedance ‘Start Date Time Stop Date Time
rLineToLine: 0.1
{3 ‘ qOmdazmjk2 | ACLineSegment In5593236-6 ABC lineToLine 2013-07-14 08:10:00 | 2013-07-14 09:00:0(
xLineToLine: 0.1
occuredDateTime stopDateTime forward_differences reverse_differences LOAD DEMAND
EnergyConsumer p EnergyConsumer q Battery p
object attribute | value ‘object attribute | value a « L
2013-07-14 08:10:00 | 2013-07-14 09:00:00 [ETDE EEDE EXEn
_303713ED-BAAG-42C4-BC6D-0DBACADAD2EA | Switch.open | 1 [_303713ED-BAA0-42C4-BC6D-ODBACADADZEA | Switch.open | 0
object attribute | value object attribute | value .
2013-07-14 08:10:00 | 2013-07-14 09:00:00
_3D0102AA-CAF2-4B6D-AE76-A4917B67CA28 | Switchopen | 1 | _3D0102AA-CAF2-4B6D-AE76-A4917B67CA28 | Switch.open [0 KVA
object attribute | value object attribute | value
2013-07-14 08:10:00 | 2013-07-14 09:00:00
_60BIC35A-A7B1-4295-AASB-7EAE21EEBO82 | Switchopen | 1 | _60B9C3SA-A7B1-4205-AASB-7E4E21EER0S2 | Switchopen | 0

_images/rc1_start_simulation.png
GridAPPS-D X

@@|172.20.128.20:8082ﬁeee8500 | @ Q search wB ¥ A =

2l Most Visited @ Getting Started @ PNNL WEB PORTAL

GridAPPS-D IEEE 8500 Fri May 19 2017 16:33:30 GMT-0700 (Pacific Standard Time)

v
g Voltage A Start Simulation

ccap_capbank3]

Switch A CLOSED S0

8,100

8,000+

7,900

7,800 —

7,700

7,600+

7,500+

74004

4

7300 —

7.200
Voltage 1 Tap
A 6252.510505-4481.860073]V 10
B -7013.064122-3197.545301j V10
C 620.602583+7341.037835]V 3
Voltage B

e e

_images/psc.png
GridAPPS-D - Mozilla Fox. -]

Power System Configurati ‘1

Geographical region name IEEE v
Sub-geographical region name Large v
Line name test9500new v

_images/sc.png
GridAPPS-D - Mozilla Firefox)

Simulation Configuration

Start time 2013-07-14 08:00:00
YYYY-MM-DD HH:MM:SS

Duration 1200

Seconds

Simulator GridLABD - :?(wev flow solver method
Real time ®

Simulation name test9500new

Model creation configuration {

"load_scaling_factor": "1",

"schedule_name": "ieeezipload”,

"z_fraction™: "0",

"i_fractio

"p_fraction™: "0",

“randomize_zipload_fractions": false, |

_images/rc3_demo.png
& C @® localhost:8080/topology * A QO :

GridAPPS-D develop

)) . . VOLTAGE A
TR 886298411 I I I
mdlation - Simulation 8,600

' 8,500
8,400 —
8,300 —
8,200 —
8,100
. 8,000 -
capbank3 R 7,900
switchA OPEN I . 7,800
SwitchB OPEN . 7700 -
A 7,600 i
Voltage Tap }
7950.3026316009355.-33.55605086743668 V. 12 J§ e 7,500
7967.103775402906..-153.34689815204297 V. 12] 7,400
7563.035254247806 .+87.1874130677879 V 5 S . T I I T |
. N)] Q
capbank1 - .‘LQ{L .Q,Q{L -’Ipfb -'Le Q«Q
SwitchA OPEN capbani2 R R [\l ® ®
FEEDER_REG
Voltage Tap Power in VOLTAGE B
7331.647290432317.-30.429408789074245 V2 1628840.7936476958.-30.429408789074245 VA 8.200
7331.271197536398.-150.41403010392276 V= 2 1559701.637297211.-150.41403010392276 VA ’ —l
7283.741912239453.+89.61476429652863 V. 1 1603869.035555997 .+89.61476429652863 VA 8.100
[Voltage Tap 8.000 |
Simulation Status FATAL | ERROR | A 8604.896852784808.] A 8120.606478489488.-33.590643012331384 V. 16 g
B 8202.855536227855. B 7902.329271352134.-153.46681163700757 V 10 2900
R . C 7535726068220270, C 7426.73032868759.+87.88617155100282 V 1 b
incrementing to 21 e e
7,800 —
2. e done with timestep 20 7,700
3. e time approved 21 7,600
7,500 —
4. e calling time_request 21
7,400 —
5. e Done with timestep 20 4) 4 : . !
i N o o® oF S
o oS 0 oS S
®° (Vi ®° R Vo
6. e fncs events []
VOLTAGE C

7. Q about to get fncs events 7,560

_images/QUERY_OBJECT_TYPES.png
Destination topic

Response topic

Request

Response

goss.gridappsd.process.request.data.powergridmodel

/Istomp-client/response-queue

A wN R
-

"requestType
"resultFormat™:

Send request

"objectTypes": [

[

PVONOUVAWN R

-~

"http:
"http:
"http:
"http:
"http:
"http:
"http:
"http:

//iec.
//iec.
//iec.
//iec.
//iec.
//iec.
//iec.
//iec.

"QUERY_OBJECT_TYPES",
"JSON"

ch/TC57/CIM10@#ACLineSegment”,
ch/TC57/CIM1@e#BaseVoltage”,
ch/TC57/CIM1ee#BatteryUnit”,
ch/TC57/CIM1@@#ConnectivityNode”,
ch/TC57/CIM1@e#CoordinateSystem”,
ch/TC57/CIM1@@#CurrentLimit”,
ch/TC57/CIM1@@#EnergyConsumer™,
ch/TC57/CIM1@@#EnergySource”,

_images/QUERY_OBJECT_TYPES_2.png
Destination topic

Response topic

Request

Response

goss.gridappsd.process.request.data.powergridmodel

/Istomp-client/response-queue

i

14

2 "requestType": "QUERY_OBJECT_TYPES",

3 "modelId": 49AD8EQ@7-3BF9-A4E2-CB8F-C3722F837B62",
4 "resultFormat™: "JSON"

5%

request

"objectTypes": [
"http://iec.ch/TC57/CIM1@@#ConnectivityNode",
"http://iec.ch/TC57/CIM1@@#ACLineSegment™,
"http://iec.ch/TC57/CIM1@@#EnergyConsumer",
"http://iec.ch/TC57/CIM1@@#TransformerTank",
"http://iec.ch/TC57/CIM1@@#PowerTransformer",
"http://iec.ch/TC57/CIM1@@#LoadBreakSwitch",
"http://iec.ch/TC57/CIM1@@#Fuse”,
"http://iec.ch/TC57/CIM1@@#Breaker”,

{

PVONOUVAWN R

_images/config_sim_1.png
Configure New Simulation k

k)

Select Comparison Type

Applications & Services

Browse Data

Do

Stomp Client

G

Log Out

1

Connected

_images/config_sim_config.png
i

GridAPPS-D
Start time 2021-07-07 14:15:52
YYYY-MM-DD HH:MM:SS
Duration 120
Seconds
simulator Gridl ABD) e flow sobver method
Real time e

Simulation name

Model creation configuration

final9500node

"load_scaling_factor": "1",
"schedule_name": "ieeezipload",
"z_fraction": “e",

_fraction": "1",

"p_fraction": “"e",
"randomize_zipload_fractions": false,
"use_houses”: false

Close -

_images/config_app_config1.png
il

GridAPPSD remotede

Power System Configuration

Simulation Configuration Application Configuration Test Configuration

Application name

Select an option £

Service Configuration

_images/config_file_docker_directory.png
@ oridappsd@d613b125b344: /tmp/gridiabdsimulation
(base) aanderson@DESKTOP-TIUCRCT:~$ docker exec -it gridappsd-docker_gridappsd_1 bash

gridappsd@de13b125b344: /gridappsd$ cd /tmp/gridlabdsimulation
gridappsd@ds13b125b344: /tmp/gridlabdsimulations 1s -1

total 512

-ru-r--r-- 1 gridappsd gridappsd 46 Nov 6 03:08 ieeezipload.player
-ru-r--r-- 1 gridappsd gridappsd 29576 Nov 6 63:08 model_base.dss
-ru-r--r-- 1 gridappsd gridappsd 61660 Nov 6 63:68 model base.glm
-ru-r--r-- 1 gridappsd gridappsd 2233 Nov 6 63:08 model_busxy.dss
-ru-r--r-- 1 gridappsd gridappsd 321969 Nov 6 63:68 model_dict.json
-ru-r--r-- 1 gridappsd gridappsd 12131 Nov 6 63:08 model_guid.dss
-ru-r--r-- 1 gridappsd gridappsd 31519 Nov 6 63:68 model limits.json
-ru-r--r-- 1 gridappsd gridappsd 18456 Nov 6 63:68 model_outputs.json
-ru-r--r-- 1 gridappsd gridappsd 1427 Nov 6 63:08 model_startup.glm
-ru-r--r-- 1 gridappsd gridappsd 18777 Nov 6 63:68 model_symbols.json
-ru-r--r-- 1 gridappsd gridappsd 345 Nov 6 03:08 model_weather.Csv

gridappsd@de13b125b344: /tmp/gridlabdsimulations -

_images/config_system_config1.png
GridAPPSD remote:develop

il

Power System Configuration Simulation Configuration Application Configuration

Test Configuration

Service Configuration

Geographical region name

Sub-geographical region name Large v

Line name Selectanoption v

Close Submit

_images/config_sim_config1.png
i

GridAPPS-D
Start time 2021-07-07 14:15:52
YYYY-MM-DD HH:MM:SS
Duration 120
Seconds
simulator Gridl ABD) e flow sobver method
Real time e

Simulation name

Model creation configuration

final9500node

"load_scaling_factor": "1",
"schedule_name": "ieeezipload",
"z_fraction": “e",

_fraction": "1",

"p_fraction": “"e",
"randomize_zipload_fractions": false,
"use_houses”: false

Close -

_images/config_system_config.png
GridAPPSD remote:develop

il

Power System Configuration Simulation Configuration Application Configuration

Test Configuration

Service Configuration

Geographical region name

Sub-geographical region name Large v

Line name Selectanoption v

Close Submit

_images/menu_select_stomp.png
Configure New Simulation

<" Select Comparison Type
&= Applications & Services
Q, Browse Data

] Stomp Client k
() LogOut

1

Connected

_images/menu.png
GridAPPS-D - Mozilla Firefox [}

GridAPPS-D develop 1

Connected

Menu

_images/menus1.png
GridAPPS-D remote:develop

ooe

_images/menus.png
GridAPPS-D remote:develop

ooe

_images/power_grid_models_usage.png
I

Users
System User Evaluator Operator Test Manager
GridAPPS-D ADMS App
Extemal I Query for Power System Model |
Vendor DMS
External Vendor B8 Query for Model Measurement mRIDs
ADMS Systems Query for Weather Data
Other Sensor SCADA AMI Meter -
Data Gls Interface Data Historian [Configure Simulation / Export Model |
[Process Measurements / App Core Algorithm |
(Subscribe to Simulation]
ERITEED [Publish Equipment Control Commands |
ri - . Sensor . Device Protocol i - 8
ADMS Services State Estimator Simulator Alarm Service Services [Query for Historical & Timeseries Data |
[Subscribe & Publish Log Messages]

GridAPPS-D API

PowerGrid
Models API

TCP/IP Network
API

Configuration
File API

Simulation API Timeseries APl

API

‘ Device Service

‘ Logging API ‘

GOSS Message Bus

Authentication and Authorization Security Layer

Process

GridAPPS-D Core Services Manager

Simulation
Manager

Logging
Manager

Configuration
Manager

Services ‘ Data Managers

Manager

Application
Manager

IGridAPPS—D Platform

Co-simulator
(HELICS or FNCS)

Static Data Network Models

GridLab-D (MysQL) (Blazegraph)
OpenDSS
NS3 Real-time Data & Graph Model

Historian
{(ProvEn / InfluxDB)

(NetworkX)

_images/plots_light_theme.png
GridAPPS-D

EUETIILE 1357804125

remote:develop

Simulation

s
i
Jd

Simulation Status @

Theme Light

Logging off

& T

Time zone LOCAL v

LOAD DEMAND
(@ EnergyConsumerp) (@ EnergyConsumerq) (@ Batteryp)

oo @ (50

Battery q, Solarq

STEAM GEN 1 (MAGNITUDE)
(@ s002chp1 () (@ Inso02chp-1 (8)) (@ Ins00zchp-1 (©)

_images/image_pinned.png
58 viz:

#image: gridappsd/viz${GRIDAPPSD TAGL

images: gridappsd/viz:releases 2021.11.¢|

e vz

62 ports:

63 - 8080:8082

64 depends_on:

65 - gridappsd

6 volumes:

&7 ./conf/viz.config: /gridappsd/viz/assets/config.json
8

69 gridappsd:

70 i H 1

image: gridappsd/gridappsd:releases 2022.01.0

Container name: gridappsd
73 ports:
Sa # Earh nf +he €Al lnwuina are nort manninac £ram +he hnct “ntn +ho

_images/image_local.png
388238

72
73

gridappsd:

#image: gridappsd/gridappsd${GRIDAPPSD TAG}
image: gridappsd:locall
container_name: gridappsd

ports:

Each of the following are port mappings from the host into the

container.

The first three are used by GridAPPS-D for the different

_images/localhost8080.png
Usemame system

Password PR .

_images/light_theme.png
@ GridAPPS-D X 4+

< CcC O Al cure | 54.212.138.13

i Apps

LOCAL wv

_images/main_menu.png
Configure New Simulation

k)

Select Comparison Type

Applications & Services

Browse Data

Do

Stomp Client

G

Log Out

1

Connected

_images/config3.png
Power System Configuration

Simulation Configuration

Application name

Application configuration

Select one option

v

Application Configuration

Test Configuration

_images/config_app_config.png
il

GridAPPSD remotede

Power System Configuration

Simulation Configuration Application Configuration Test Configuration

Application name

Select an option £

Service Configuration

_images/config2.png
Start time
(YYYY-MM-DD HH:MM:SS)

Duration
(Seconds)

Simulator

Real time

Simulation name

Model creation configuration

2019-06-1115:11:34

120

GridLAB-D o z;wer flow solver method

N0

ieee8500

Simulation Configuration

"load_scaling_factor": "1",
"schedule_name": "ieeezipload",
"z_fraction™: "0",

"i_fraction": "1",

"p_fraction": "0",
"randomize_zipload_fractions": false,
"use_houses": false

Close

_images/04_config_sim_export1.png
I

Users
System User Evaluator Operator Test Manager
GridAPPS-D ADMS App
Extemal [Query for Power System Model]
Vendor DMS
External Vendor Query for Model Measurement mRIDs
ADMS Systems Query for Weather Data
Other Sensor SCADA AMI Meter -
Data Gls Interface Data Historian Configure Simulation / Export Model
Process Measurements / App Core Algorithm
(Subscribe to Simulation]
GHITEED [Publish Equipment Control Commands |
ri . Sensor . Device Protocol i - 8
ADMS Services State Estimator Simulator Alarm Service Services [Query for Historical & Timeseries Data__|
[Subscribe & Publish Log Messages]
3 PowerGrid Configuration TCP/IP Network | | Device Service
GridAPPS-D API Moddls API e Apl Simulation API Logging API Timeseries APl APl APl

GOSS Message Bus

Authentication and Authorization Security Layer

Process
Manager

Simulation
Manager

Configuration
Manager

Logging

GridAPPS-D Core Services Manager

Manager Data Managers

‘ Application

Co-simulator

IGridAPPS—D Platform

(HELICS or FNCS)
Static Data Network Models
MysQL) Bl h
GridLab-D (MysQL) B \(7a1egrap)
OpenDSS - -
N Real time Data & Graph Model
Historian Net: X
(ProvEn / InfluxDB) (Networkx) |

_images/04_run.png
Activities () Terminal v

<9 G

@

Mar7 17:13

osboxes@osboxes: ~/gridappsd-docker Q=

:~$ cd gridappsd-docker
/gridappsd-docker$./run.shl]

_images/03_query_weather.png
® W W @

System User Evaluator Operator Test Manager
GridAPPS-D ADMS App
Extemal [Query for Power System Model
Vendor DMS
External Vendor Query for Model Measurement mRIDs
ADMS Systems Query for Weather Data
Other Sensor SCADA AMI Meter -
Data Gls Interface Data Historian Configure Simulation / Export Model
[Process Measurements / App Core Algorithm |
(Subscribe to Simulation]
GHITEED [Publish Equipment Control Commands |
ri . Sensor . Device Protocol i - 8
ADMS Services State Estimator Simulator Alarm Service Services [Query for Historical & Timeseries Data__|
[Subscribe & Publish Log Messages]
3 PowerGrid Configuration . . . X : TCP/IP Network | | Device Service
GridAPPS-D API Models APl e Apl Simulation API Logging API Timeseries API APl APl

GOSS Message Bus

Authentication and Authorization Security Layer

Configuration Simulation

3 s Process
GridAPPS-D Core Services Manager Manager

Manager Data Managers

Manager Manager

‘ Application Logging

Co-simulator
(HELICS or FNCS)

Static Data
(MysQL)

Network Models
(Blazegraph)

Graph Model
(Networkx)

IGridAPPS—D Platform

_images/04_config_sim_export.png
I

Users
System User Evaluator Operator Test Manager
GridAPPS-D ADMS App
Extemal [Query for Power System Model]
Vendor DMS
External Vendor Query for Model Measurement mRIDs
ADMS Systems Query for Weather Data
Other Sensor SCADA AMI Meter -
Data Gls Interface Data Historian Configure Simulation / Export Model
Process Measurements / App Core Algorithm
(Subscribe to Simulation]
GHITEED [Publish Equipment Control Commands |
ri . Sensor . Device Protocol i - 8
ADMS Services State Estimator Simulator Alarm Service Services [Query for Historical & Timeseries Data__|
[Subscribe & Publish Log Messages]
3 PowerGrid Configuration TCP/IP Network | | Device Service
GridAPPS-D API Moddls API e Apl Simulation API Logging API Timeseries APl APl APl

GOSS Message Bus

Authentication and Authorization Security Layer

Process
Manager

Simulation
Manager

Configuration
Manager

Logging

GridAPPS-D Core Services Manager

Manager Data Managers

‘ Application

Co-simulator

IGridAPPS—D Platform

(HELICS or FNCS)
Static Data Network Models
MysQL) Bl h
GridLab-D (MysQL) B \(7a1egrap)
OpenDSS - -
N Real time Data & Graph Model
Historian Net: X
(ProvEn / InfluxDB) (Networkx) |

_images/05_run_gapps.png
Activities () Terminal v Mar7 17:17

gridappsd@7e1bbba768fs: /gridappsd Q

starting influxdb ...
Starting mysql
Starting redis
Starting proven .

Starting blazegraph
Starting gridappsd .
Starting sample_app

@ Starting viz ... done
>

done
done

Getting blazegraph status

Checking blazegraph data
Blazegrpah data available (2625548)
Getting viz status

Contatners are running
http://localhost:8080/

Connecting to the gridappsd container
docker exec -it gridappsd /bin/bash

gridappsd@7e1bbba768f5: /gridappsds ./run-gridappsd.shl]

_images/05_virtualbox_home.png
§7 Oracle VM VirtualBox Manager - o

Preferences Import Export
Welcome to VirtualBox!
The left part of application window contains global tools and lists all
virtual machines and virtual machine groups on your computer. You
‘can import, add and create new VMs using corresponding toolbar

buttons. You can popup a tools of currently selected element using
corresponding element button.

File Machine Help

You can press the F1 key to get instant help, or visit
www.virtualbox.org for more information and latest news.

_images/04_virtualbox_wizard.png
18 Oracle VM VirtualBox 6.1.32 Setup

Oracle VM VirtualBox 6.1.32
installation is complete.

Click the Finish button to exit the Setup Wizard.

Version 6.1.32 <Back

Cancel

_images/05_app_core_algorithm.png
® W@ W e

System User Evaluator Operator Test Manager
GridAPPS-D ADMS App
Extemal Query for Power System Model
Vendor DMS ‘ oms ‘ [Y ek |
External Vendor [Query for Model Measurement mRIDs |
ADMS Systems [Query for Weather Data]
Other Sensor SCADA AMI Meter -
Data Gls Interface Data Historian Configure Simulation / Export Model
Subscribe to Simulation
GHITEED [Publish Equipment Control Commands |
ri . Sensor . Device Protocol i - 8
ADMS Services State Estimator Simulator Alarm Service Services [Query for Historical & Timeseries Data__|
Subscribe & Publish Log Messages]
3 PowerGrid Configuration TCP/IP Network | | Device Service
GridAPPS-D API Models APl e Apl Simulation API Logging API Timeseries APl APl APl

GOSS Message Bus
Authentication and Authorization Security Layer

Process Configuration Simulation Services Application Logging
Manager Manager Manager Manager Manager Manager

GridAPPS-D Core Services Data Managers

Co-simulator
(HELICS or FNCS)

Static Data
(MysQL)

GridLab-D

OpenDSS

NS3 Real-time Data & Graph Model

Historian
((ProvEn / InfluxDB) (Netw0rkx)/

IGridAPPS—D Platform

_images/06_subscribe_to_sim.png
@ W

@

@

Users
System User Evaluator Operator Test Manager
GridAPPS-D ADMS App
Extemal [Query for Power System Model]
Vendor DMS
External Vendor [Query for Model Measurement mRIDs |
ADMS Systems [Query for Weather Data]
Other Sensor SCADA AMI Meter -
Data Gls Interface Data Historian [Configure Simulation / Export Model |
Process Measurements / App Core Algorithm
GHITEED Publish Equipment Control Commands
ri . Sensor . Device Protocol i - B
ADMS Services State Estimator Simulator Alarm Service Services Query for Historical & Timeseries Data |
Subscribe & Publish Log Messages]
- PowerGrid Configuration : TCP/IP Network | | Device Service
GridAPPS-D API Moddls API e Apl Simulation API Logging API Timeseries APl APl APl

GOSS Message Bus

Authentication and Authorization Security Layer

GridAPPS-D Core Services ‘

Configuration
Manager

Simulation
Manager

Logging

Application
Manager

Manager

‘ ‘ Data Managers

IGridAPPS—D Platform

Static Data
(MysQL)

Real-time Data &
Historian
{(ProvEn / InfluxDB)

Network Models
(Blazegraph)

Graph Model
(Networkx)

_images/06_subscribe_to_sim1.png
@ W

@

@

Users
System User Evaluator Operator Test Manager
GridAPPS-D ADMS App
Extemal [Query for Power System Model]
Vendor DMS
External Vendor [Query for Model Measurement mRIDs |
ADMS Systems [Query for Weather Data]
Other Sensor SCADA AMI Meter -
Data Gls Interface Data Historian [Configure Simulation / Export Model |
Process Measurements / App Core Algorithm
GHITEED Publish Equipment Control Commands
ri . Sensor . Device Protocol i - B
ADMS Services State Estimator Simulator Alarm Service Services Query for Historical & Timeseries Data |
Subscribe & Publish Log Messages]
- PowerGrid Configuration : TCP/IP Network | | Device Service
GridAPPS-D API Moddls API e Apl Simulation API Logging API Timeseries APl APl APl

GOSS Message Bus

Authentication and Authorization Security Layer

GridAPPS-D Core Services ‘

Configuration
Manager

Simulation
Manager

Logging

Application
Manager

Manager

‘ ‘ Data Managers

IGridAPPS—D Platform

Static Data
(MysQL)

Real-time Data &
Historian
{(ProvEn / InfluxDB)

Network Models
(Blazegraph)

Graph Model
(Networkx)

_images/06_subscribe_to_sim2.png
@ W

@

@

Users
System User Evaluator Operator Test Manager
GridAPPS-D ADMS App
Extemal [Query for Power System Model]
Vendor DMS
External Vendor [Query for Model Measurement mRIDs |
ADMS Systems [Query for Weather Data]
Other Sensor SCADA AMI Meter -
Data Gls Interface Data Historian [Configure Simulation / Export Model |
Process Measurements / App Core Algorithm
GHITEED Publish Equipment Control Commands
ri . Sensor . Device Protocol i - B
ADMS Services State Estimator Simulator Alarm Service Services Query for Historical & Timeseries Data |
Subscribe & Publish Log Messages]
- PowerGrid Configuration : TCP/IP Network | | Device Service
GridAPPS-D API Moddls API e Apl Simulation API Logging API Timeseries APl APl APl

GOSS Message Bus

Authentication and Authorization Security Layer

GridAPPS-D Core Services ‘

Configuration
Manager

Simulation
Manager

Logging

Application
Manager

Manager

‘ ‘ Data Managers

IGridAPPS—D Platform

Static Data
(MysQL)

Real-time Data &
Historian
{(ProvEn / InfluxDB)

Network Models
(Blazegraph)

Graph Model
(Networkx)

nav.xhtml

 Table of Contents

 		
 GridAPPS-D Platform, API, and App Documentation

 		
 Windows 10 Installation

 		
 WSL2 & Docker Desktop Setup

 		
 Docker Desktop Licensing

 		
 System Requirements

 		
 Windows 10 OS Build Requirments

 		
 Disconnect from Corporate VPN

 		
 Install Windows Subsystem for Linux

 		
 Install Docker for Windows

 		
 Installing GridAPPS-D

 		
 Clone the GridAPPS-D Docker repository

 		
 Install the GridAPPS-D Docker Containers

 		
 Launch the GridAPPS-D Platform

 		
 Known Issues around Corporate VPN Connectivity

 		
 Installing GridAPPSD-Python and Notebook Tutorials

 		
 Install Anaconda or Miniconda

 		
 Install GridAPPSD-Python

 		
 Install Jupyter Lab

 		
 Python Training Notebooks

 		
 Ubuntu Linux Installation

 		
 Installing GridAPPS-D

 		
 Clone the GridAPPS-D Repository

 		
 Install Docker

 		
 Install GridAPPS-D

 		
 Installing GridAPPSD-Python and Notebook Tutorials

 		
 Quick Installation

 		
 Manual Installation

 		
 VirtualBox Installation

 		
 VirtualBox VM Setup

 		
 System Requirements

 		
 Download VirtualBox

 		
 Download Ubuntu Linux OS

 		
 Create an Ubuntu VM

 		
 Configure the Ubuntu VM

 		
 Installing GridAPPS-D

 		
 Clone the GridAPPS-D Repository

 		
 Install Docker

 		
 Install GridAPPS-D

 		
 Installing GridAPPSD-Python and Notebook Tutorials

 		
 Quick Installation

 		
 Manual Installation

 		
 Running GridAPPS-D

 		
 Starting the GridAPPS-D Platform

 		
 Stopping the Platform

 		
 Stopping the Platform from Inside the Docker Container

 		
 Stopping the Platform from a New Terminal

 		
 Restarting the Platform

 		
 Changing Release Tags

 		
 Pulling Updated Containers

 		
 Using the GridAPPS-D Viz

 		
 Accessing the GridAPPS-D Viz

 		
 Creating a Simulation

 		
 Power System Configuration

 		
 Simulation Configuration

 		
 Application Configuration

 		
 Test Manager Configuration

 		
 2.5. Service Configuration

 		
 Running a Simulation with VIZ

 		
 Simulation Tab

 		
 Events Tab

 		
 Applications Tab

 		
 Alarms Tab

 		
 Creating Stripchart Plots

 		
 Docker Shortcuts

 		
 About Docker

 		
 Managing Running Containers

 		
 View Running Containers

 		
 Enter a Running Container

 		
 View Contents of a Container

 		
 Exit a Running Container

 		
 Kill a Running Container

 		
 3. Managing Container Images

 		
 Managing Container Images

 		
 Prune Unused Images

 		
 Delete All Containers

 		
 Update Containers Manually

 		
 Transferring Container Data

 		
 Transferring Configuration File API Output

 		
 Transferring Simulation GLM Files

 		
 Configuring GridAPPS-D Containers

 		
 Adding Applications

 		
 Adding New Services

 		
 Changing Tags of a Container

 		
 Building a Local GridAPPS-D Container

 		
 Cloud Server Configuration

 		
 Configuring Remote GridAPPS-D VIZ

 		
 Running GridAPPS-D Remotely

 		
 GridAPPS-D Platform Release History

 		
 Version 2021.04.0

 		
 Version 2021.03.0

 		
 Version 2021.02.0

 		
 Version 2020.12.0

 		
 Version 2020.11.0

 		
 Version 2020.09.0

 		
 Version 2020.08.0

 		
 Version 2020.07.0

 		
 Version 2020.05.0

 		
 Version 2020.04.0

 		
 Version 2020.03.0

 		
 Version 2020.02.0

 		
 Version 2020.01.0

 		
 Version 2019.12.0

 		
 Version 2019.10.0

 		
 Version 2019.09.1

 		
 Version 2019.09.0

 		
 Version 2019.08.1

 		
 Version 2019.08.0

 		
 Version 2019.07.0

 		
 Version 2019.06.0

 		
 Version 2019.03.0

 		
 Version: 2019.02.0

 		
 Version: 2019.01.0

 		
 Known VPN and Proxy Issues

 		
 DNS Configuration

 		
 Proxy Server Configuration

 		
 Eclipse IDE Setup

 		
 GridAPPS-D Introduction

 		
 What is GridAPPS-D?

 		
 GridAPPS-D Platform Characteristics

 		
 Vendor / Vendor Platform Independent

 		
 Standards-based Architecture

 		
 Replicable

 		
 Flexible Distribution Simulation

 		
 Data Representation & Management

 		
 Standards-based Data Representation

 		
 Standards-based Data Interfaces

 		
 Data Translation to Non-standardized Elements

 		
 Available Distribution Feeders

 		
 Real-Time Distribution Simulation

 		
 Real-Time & Faster-than-Real-Time Simulation

 		
 Controllable Power System Equipment

 		
 Noisy / Bad Data Injection & Communication Failures

 		
 Reconfigurable Power System Topologies

 		
 Real-Time Simulation Visualization

 		
 Using the GridAPPS-D Platform

 		
 GridAPPS-D Architecture

 		
 GridAPPS-D Architecture

 		
 GridAPPS-D User Roles

 		
 Integration with External Vendor Systems

 		
 GridAPPS-D Applications

 		
 GridAPPS-D Services

 		
 GridAPPS-D Application Programming Interface

 		
 GOSS Message Bus

 		
 GridAPPS-D Core Services

 		
 Co-Simulation Framework

 		
 Database Structures

 		
 GridAPPS-D Python Library

 		
 Intro to GridAPPSD-Python

 		
 Connecting to GridAPPS-D Platform

 		
 Specifying Environment Variables (Preferred)

 		
 Specifying Connection Parameters Manually

 		
 GridAPPSD-utils Deprecated

 		
 Passing API calls with GridAPPSD-Python

 		
 .get_response(topic, message)

 		
 .subscribe(topic, message)

 		
 .send(topic, message)

 		
 .unsubscribe(conn_id)

 		
 Importing Required Python Libraries

 		
 Required GridAPPS-D Libraries

 		
 Other Required Python Libraries

 		
 GridAPPSD-Python GridAPPSD Library

 		
 Get Methods

 		
 Set / Send Methods

 		
 PowerGrid Models API Methods

 		
 GridAPPSD-Python Topics Library

 		
 GridAPPSD-Python Simulation Library

 		
 GridAPPSD-Python DifferenceBuilder

 		
 GridAPPS-D Application Structure

 		
 Application Structure

 		
 Connecting to GridAPPS-D Platform

 		
 Querying for the Power System Model

 		
 Model Query Information flow

 		
 Model Query Sample App Code

 		
 Querying for Measurement mRIDs

 		
 Measurement Query Information Flow

 		
 Measurement Query Sample App Code

 		
 Querying for Weather Data

 		
 Weather Query Information Flow

 		
 Weather Query Sample App Code

 		
 Configuring a Parallel Simulation

 		
 Configuration Query Information Flow

 		
 Configuration Query Sample App Code

 		
 Processing Measurements & App Core Algorithm

 		
 App Core Information Flow

 		
 App Core Sample App Code

 		
 Subscribing to Simulation Output

 		
 Simulation Subscription Information Flow

 		
 Simulation Subscription Sample App Code

 		
 Publishing Equipment Commands

 		
 Equipment Command Information Flow

 		
 Equipment Command Sample App Code

 		
 Viewing Application Results in GridAPPS-D Viz

 		
 Querying Historical & Timeseries Data

 		
 Historical Data Query Information Flow

 		
 Historical Data Query Sample App Code

 		
 Subscribing and Publishing to Logs

 		
 Logging Information Flow

 		
 Log Message Sample App Code

 		
 GridAPPS-D Service Structure

 		
 Introduction to the Common Information Model

 		
 Introduction

 		
 What is the Common Information Model?

 		
 Why is Data Integration Important?

 		
 What does CIM Provide?

 		
 Background and Structure of the CIM

 		
 UML Class Diagrams

 		
 UML Sequence Diagrams

 		
 Resource Description Framework (RDF)

 		
 Summary of CIM XML Classes

 		
 Names, Nodes, Terminals

 		
 Power System Equipment

 		
 References

 		
 API Communication Channels

 		
 /queue/ vs /topic/ Channels

 		
 Queue Channels

 		
 Topic Channels

 		
 Static GridAPPS-D Topics

 		
 Importing the Topics Library

 		
 Request PowerGrid Model Data

 		
 Request Timeseries Data

 		
 Request Platform Status

 		
 Querying Log Data

 		
 Subscribing to Platform Logs

 		
 Dynamic GridAPPS-D Topics

 		
 Subscribe to Simulation Output

 		
 Publish to Simulation Input

 		
 Subscribe to Simulation Logs

 		
 API Message Structure

 		
 Python Dictionaries VS JSON Strings

 		
 Structure of a GridAPPS-D Message

 		
 Parsing Returned Data

 		
 Using the STOMP Client

 		
 Specifying the Topic

 		
 Entering the Request Message

 		
 Submitting a Request

 		
 Using the PowerGrid Models API

 		
 Introduction to the PowerGrid Model API

 		
 API Syntax Overview

 		
 API Communication Channel

 		
 Structure of a Query Message

 		
 Specifying the requestType

 		
 CIM Objects Supported by PowerGrid Models API

 		
 Object mRIDs vs Measurement mRIDs

 		
 Object Classes vs Control Attributes

 		
 Querying for Model mRIDS

 		
 Query for mRIDs of all Models

 		
 Query for mRIDs of Objects in a Feeder

 		
 Querying for Equipment Dictionaries

 		
 Query for Dictionary of all Models

 		
 Query for Object Dictionary

 		
 Querying for CIM Attributes

 		
 Query for CIM Classes of Objects in Model

 		
 Query for CIM Attributes of an Object

 		
 Querying for Object Measurements

 		
 Querying for Measurements

 		
 Filtering Returned Data

 		
 Querying with a Custom SPARQL String

 		
 Query using a SPARQL filter

 		
 Query using a Generic SPARQL Query

 		
 Available Models in Default Installation

 		
 IEEE 13 Node Model

 		
 IEEE 123 Node Model

 		
 IEEE 123 Node Model with PV

 		
 IEEE 8500 Node Model

 		
 9500 Node Test System

 		
 PNNL Taxonomy Feeder

 		
 EPRI J1 Feeder

 		
 UAF Microgrid

 		
 Adding New Models to GridAPPS-D

 		
 Adding New Models to the PowerGrid Models GitHub Repo

 		
 Using the Configuration File API

 		
 Introduction to the Configuration File API

 		
 API Syntax Overview

 		
 API Communication Channel

 		
 Structure of a Query Message

 		
 Specifying the configurationType

 		
 Querying for GridLab-D Configuration Files

 		
 Export all GridLab-D Files

 		
 Query for GridLab-D Base GLM File

 		
 Query for GridLab-D Symbols File

 		
 Query for GridLab-D Measurement Types

 		
 Querying for OpenDSS Configuration Files

 		
 Export all OpenDSS Files

 		
 Query for OpenDSS Base File

 		
 Query for OpenDSS Coordinate File

 		
 Query for Y-Bus Matrix

 		
 Querying for CIM Dictionary Files

 		
 Query for Model Dictionary

 		
 Query for CIM Feeder Index

 		
 Running Simulations with the Simulation API

 		
 Introduction to the Simulation API

 		
 API Syntax Overview

 		
 API Communication Channel

 		
 Structure of a Simulation Message

 		
 Simulation Start Message

 		
 GridAPPS-D Communication Channel

 		
 Structure of a Start Message

 		
 Power System Configuration

 		
 Simulation Configuration

 		
 Application Configuration

 		
 Test Manager Configuration

 		
 Fault Events

 		
 Communication Outage Events

 		
 Scheduled Command Events

 		
 Service Configuration

 		
 Complete Simulation Start Message

 		
 Starting the Simulation

 		
 Pausing, Resuming, or Stopping a Simulation

 		
 Using the gridappsd.simulation Python Library

 		
 Using a Topic + Message API Call

 		
 Publishing and Subscribing with the Simulation API

 		
 Introduction to the Simulation API

 		
 Processing Measurements & App Core Algorithm

 		
 App Core Information Flow

 		
 Structure of Simulation Output Message

 		
 Format of Measurement Values

 		
 Role of Measurement mRIDs

 		
 App Core as a Function Definition

 		
 App Core as a Class Definition

 		
 Subscribing to Simulation Output

 		
 Simulation Subscription Information Flow

 		
 Subscription API Communication Channel

 		
 Comparison of Subscription Approaches

 		
 Subscription for Function-based App Core

 		
 Subscription for Class-Based App Core

 		
 Subscribing to Parallel Simulations

 		
 Publishing Commands to Simulation Input

 		
 Equipment Command Information Flow

 		
 Simulation Input API Channel

 		
 Equipment Control mRIDs

 		
 Format of a Difference Message

 		
 Using GridAPPSD-Python DifferenceBuilder

 		
 Unsubscribing from a Simulation

 		
 Using the Timeseries API

 		
 Introduction to the Timeseries API

 		
 API Syntax Overview

 		
 API Communication Channel

 		
 Structure of a Query Message

 		
 Specifying the queryMeasurement value

 		
 Querying for Timeseries Data

 		
 Querying for Weather Data

 		
 Query for Simulation Output Data

 		
 Query for Simulation Input Data

 		
 Query for Sensor Service Data

 		
 Using the Logging API

 		
 Introduction to the Logging API

 		
 API Communication Channel

 		
 Message Structure

 		
 GridAPPSD-Python Logging API Extensions

 		
 Subscribing to Simulation Logs

 		
 Subscription API Communication Channel

 		
 Subscribing using a Function Definition

 		
 Subscribing using a Class Definition

 		
 Publishing to Simulation Logs

 		
 5.1. Publishing to Local App Logs

 		
 5.2. Publishing to GridAPPS-D Logs

 		
 Querying Saved Logs

 		
 Log Query API Communication Channel

 		
 Structure of the Log Query Message

 		
 Resilient Restoration (WSU)

 		
 Overview

 		
 Application Architecture

 		
 Leveraging the GridAPPS-D Platform

 		
 Definition of Terms

 		
 References

 		
 Contact Us

 		
 Installing GridAPPS-D

 		
 Requirements

 		
 Install Docker on Ubuntu

 		
 Application Setup

 		
 Download the application

 		
 Creating the application container

 		
 Mount the application

 		
 Starting Service

 		
 Start the docker container services

 		
 Restoration application container

 		
 Executing the application container

 		
 Starting GridAPPS-D Platform

 		
 Data Model

 		
 IEEE 8500-Node Test Feeder

 		
 Visualization

 		
 Start a Simulation

 		
 Change Configurations

 		
 Adding an event

 		
 Running the platform

 		
 License

 		
 Volt-Var Optimization (WSU)

 		
 Layout

 		
 Creating the restoration application container

 		
 Forming optimization problem

 		
 Get real-time topology and load data of the test case

 		
 DER Dispatch (NREL)

 		
 Purpose

 		
 Requirements

 		
 Quick Start

 		
 Creating the der-dispatch-app application container

 		
 Application Configuration

 		
 Baseline run

 		
 Optimal Powerflow on Run

 		
 Solar Forecasting (NREL)

 		
 Purpose

 		
 Requirements

 		
 Quick Start

 		
 Creating the sample-app application container

 		
 Grid Forecasting (NREL)

 		
 Purpose

 		
 Requirements

 		
 Quick Start

 		
 Creating the sample-app application container

 		
 GridAPPS-D DNP3 Service

 		
 References

 		
 GridAPPS-D Sensor Simulator Service

 		
 Python Application Usage

 		
 Service Configuration

 		
 Request Example

 		
 GridAPPS-D Voltage Violation Service

 		
 Purpose

 		
 Topics

 		
 Message Structure

 		
 GridAPPS-D State Estimator Service

 		
 Purpose

 		
 State estimator service layout

 		
 Prerequisites

 		
 Running state estimator from the gridappsd-docker container

 		
 Building state estimator

 		
 Running state estimator from the command line

 		
 GridAPPS-D Alarm Service

_images/07_publish_commands.png
@ e

@

Users
System User Evaluator Operator Test Manager
GridAPPS-D ADMS App
Extemal Query for Power System Model
Vendor DMS ‘ oms ‘ [Y ek |
External Vendor [Query for Model Measurement mRIDs |
ADMS Systems [Query for Weather Data]
Other Sensor SCADA AMI Meter -
Data Gls Interface Data Historian [Configure Simulation / Export Model |
[Process Measurements / App Core Algorithm |
Subscribe to Simulation
GHITEED Equipment Control Commands
ri . Sensor . Device Protocol Fr— - -
ADMS Services State Estimator Simulator Alarm Service Services Query for Historical & Timeseries Data
Subscribe & Publish Log Messages
- PowerGrid Configuration : TCP/IP Network | | Device Service
GridAPPS-D API Moddls API e Apl Simulation API Logging API Timeseries APl APl APl

GOSS Message Bus

Authentication and Authorization Security Layer

Process
Manager

Configuration
Manager

Simulation
Manager

Application
Manager

Logging
Manager

GridAPPS-D Core Services Data Managers

Co-simulator

(HELICS or FNCS)
Static Data Network Models
. (MysQL) (Blazegraph)
GridLab-D » R,
OpenDSS B

NS3

Graph Model
(Networkx)

Real-time Data &
Historian
((ProvEn / InfluxDB)

IGridAPPS—D Platform

_images/07_publish_commands1.png
@ e

@

Users
System User Evaluator Operator Test Manager
GridAPPS-D ADMS App
Extemal Query for Power System Model
Vendor DMS ‘ oms ‘ [Y ek |
External Vendor [Query for Model Measurement mRIDs |
ADMS Systems [Query for Weather Data]
Other Sensor SCADA AMI Meter -
Data Gls Interface Data Historian [Configure Simulation / Export Model |
[Process Measurements / App Core Algorithm |
Subscribe to Simulation
GHITEED Equipment Control Commands
ri . Sensor . Device Protocol Fr— - -
ADMS Services State Estimator Simulator Alarm Service Services Query for Historical & Timeseries Data
Subscribe & Publish Log Messages
- PowerGrid Configuration : TCP/IP Network | | Device Service
GridAPPS-D API Moddls API e Apl Simulation API Logging API Timeseries APl APl APl

GOSS Message Bus

Authentication and Authorization Security Layer

Process
Manager

Configuration
Manager

Simulation
Manager

Application
Manager

Logging
Manager

GridAPPS-D Core Services Data Managers

Co-simulator

(HELICS or FNCS)
Static Data Network Models
. (MysQL) (Blazegraph)
GridLab-D » R,
OpenDSS B

NS3

Graph Model
(Networkx)

Real-time Data &
Historian
((ProvEn / InfluxDB)

IGridAPPS—D Platform

_images/06_ubuntu_20.04.png
Ubuntu 20.04.3 Focal Fossa

fretter

o VirtualBox (VDI) 64bit
SHA256: B8CB@F(71C532FABBF52I

Size: 1.96GB

1FF5S14AE296C0697A9BBE2D7AFEATEBFBF672C¢

_images/06_viz.png
Activities € FirefoxWeb Browser v Mar7 17:17

Username syctem

Password

3 Ri

_images/08_query_timeseries.png
@ e

w2

Users
System User Evaluator Operator Test Manager
GridAPPS-D ADMS App
Extemal [Query for Power System Model]
Vendor DMS
External Vendor [Query for Model Measurement mRIDs |
ADMS Systems [Query for Weather Data]
Other Sensor SCADA AMI Meter -
Data Gls Interface Data Historian [Configure Simulation / Export Model |
[Process Measurements / App Core Algorithm |
(Subscribe to Simulation]
. Publish Equipment Control Commands
GridAPPS-D State Estimator Sensor Alarm Service Device Protocol
ADMS Services Simulator Services
Subscribe & Publish Log Messages
- PowerGrid Configuration : TCP/IP Network | | Device Service
GridAPPS-D API Moddls API e Apl Simulation API Logging API Timeseries APl APl APl

GOSS Message Bus

Authentication and Authorization Security Layer

GridAPPS-D Core Services

Process
Manager

Configuration
Manager

Simulation
Manager

Logging
Manager Data Managers

Manager

‘ Application

IGridAPPS—D Platform

Co-simulator

(HELICS or FNCS)

Static Data
(MysQL)

Network Models
(Blazegraph)

Real-time Data &
Historian
((ProvEn / InfluxDB)

Graph Model
(Networkx)

_images/09_pick_RAM.png
€ Create Virtual Machine

Memory size

‘Select the amount of memory (RAM) in megabytes to be allocated to the
virtual machine.

‘The recommended memory size is 1024 M.

4mB

_images/07_unzip.png
Name

Date modified

Open with

Move to OneDrive
7-Zip >

Entrust Encrypt File with Password...

o @

Entrust Encrypt File...

Entrust Digitally Sign File...

Entrust Encrypt and Digitally Sign File...
Scan with Microsoft Defender...

Share

Give access to >

Restore previous versions

Sendto >

Cut
Copy

Create shortcut
Delete

Rename

Properties

Type

Size

Open archive
Open archive

Extract files...

Extract Here

Extract to "64bit\" *

Test archive

Add to archive...

Compress and email...

Add to "64bit 272"

Compress to "64bit_2.7z" and email
Add to "64bit_2.zip"

Compress to “64bit_2zip" and email
CRCSHA

_images/08_new_VM.png
Create Virtual Machine

Name and operating system

Please choose a descriptive name and destination folder for the new virtual
machine and select the type of operating system you intend to install on it.
‘The name you choose will be used throughout VirtualBox to identify this
machine.

Name: [Ubuntu

Machine Folder: | |

\Users\wmeed®\VirtualBox VMs

Type: [Linux B

Version: |Ubuntu (64-bit) -

oot e

_images/09_subscribe_publish_logs.png
I

System User Evaluator Operator Test Manager

GridAPPS-D ADMS App

Extemal [Query for Power System Model]
Vendor DMS
External Vendor [Query for Model Measurement mRIDs |
ADMS Systems [Query for Weather Data]
Other Sensor SCADA AMI Meter -
Data Gls Interface Data Historian [Configure Simulation / Export Model |
[Process Measurements / App Core Algorithm |
(Subscribe to Simulation]
GHITEED [Publish Equipment Control Commands |
ri . Sensor . Device Protocol S - 8
ADMS Services State Estimator Simulator Alarm Service ervices Query for Historical & Timeseries Data
Subscribe & Publish Log Messages]
3 PowerGrid Configuration SN, . . : TCP/IP Network | | Device Service
GridAPPS-D API Models API File API Simulation API ogging API Timeseries API API APl

GOSS Message Bus

Authentication and Authorization Security Layer

Configuration

Manager Manager

GridAPPS-D Core Services ‘ Manager Manager

‘ Simulation

Services Application Logging
Manager

Co-simulator
(HELICS or FNCS)

Static Data
(MysQL)

Real-time Data &
Historian
{(ProvEn / InfluxDB)

Graph Model
(Networkx)

IGridAPPS—D Platform

_images/09_subscribe_publish_logs1.png
I

System User Evaluator Operator Test Manager

GridAPPS-D ADMS App

Extemal [Query for Power System Model]
Vendor DMS
External Vendor [Query for Model Measurement mRIDs |
ADMS Systems [Query for Weather Data]
Other Sensor SCADA AMI Meter -
Data Gls Interface Data Historian [Configure Simulation / Export Model |
[Process Measurements / App Core Algorithm |
(Subscribe to Simulation]
GHITEED [Publish Equipment Control Commands |
ri . Sensor . Device Protocol S - 8
ADMS Services State Estimator Simulator Alarm Service ervices Query for Historical & Timeseries Data
Subscribe & Publish Log Messages]
3 PowerGrid Configuration SN, . . : TCP/IP Network | | Device Service
GridAPPS-D API Models API File API Simulation API ogging API Timeseries API API APl

GOSS Message Bus

Authentication and Authorization Security Layer

Configuration

Manager Manager

GridAPPS-D Core Services ‘ Manager Manager

‘ Simulation

Services Application Logging
Manager

Co-simulator
(HELICS or FNCS)

Static Data
(MysQL)

Real-time Data &
Historian
{(ProvEn / InfluxDB)

Graph Model
(Networkx)

IGridAPPS—D Platform

_images/10_hard_disk.png
€ Create Virtual Machine

Hard disk

1 you wish you can add a virtual hard disk to the new machine. You can
either create a new hard disk file or select one from the st or from another
location using the folder icon.

1 you need a more complex storage set-up you can skip this step and make
the changes to the machine settings once the machine is created.

“The recommended size of the hard disk is 10.00 G
O Do not add a virtual hard disk
O Create a virtual hard disk now

(@ Use an existing virtual hard disk file

Empty.

Create Ccancel

_images/14_create.png
€ Create Virtual Machine

Hard disk

1 you wish you can add a virtual hard disk to the new machine. You can
either create a new hard disk file or select one from the st or from another
location using the folder icon.

1 you need a more complex storage set-up you can skip this step and make
the changes to the machine settings once the machine is created.

“The recommended size of the hard disk is 10.00 Gt
O Do not add a virtual hard disk
O Create a virtual hard disk now
(@ Use an existing virtual hard disk file
Ubuntu 20.04.3 (64bit).vdi (Normal, 500.00 GB) @

_images/15_cpu.png
& Ubuntu - Settings

General System
System Motherboard ~ Processor Acceleration
Display Processor(s)

Storage Execution Cap:

Audio 1%
Extended Features: [_] Enable PAE/NX

Network [Enable Nested yT-x/AMD-V

Serial Ports
UsB
Shared Folders

User Interface

_images/12_select_os_file.png
@ Please choose a virtual hard disk file X
« > v o W > ThisPC > Deskiop > download > 64bit v O || £ Ssearch64bit
Organize + New folder > m 2
n i Name ‘Dale modified ‘Type ‘Size
n
n
=
n
n
n
n
n
& ThispC
W 3D Objects
M Desktop oI 22

File name: |Ubuntu 20.04.3 (64bit).vdi v ‘ ‘AII virtual hard disk files (“vmd| v

Open Cancel

_images/13_selected.png
(5] Ubuntu - Hard Disk Selector

Medium

@ 9

Add Refresh

v Not Attached
Ubuntu 20.04.3 (64bit)vdi 500.00 GB 736GB.

Name Virtual Size Actual Size

|Search By Name ~.

R »

_images/17_start.png
¥# Oracle VM VirtualBox Manager — [u] X
File Machine Help

i~ 8800

New Seftings Discard Start
S General

Name: Ubuntu

@ settings... Ctrles | Vountu (64-51)
¥ Clone.. Cti+0
& Mowe.. 5 MB
(7 Export to OCl.. ppy, Optical, Hard Disk
% remove. PO e e,
P Group
__A?
Pause ' Headless Start
Reset &° Detachable Start
) @2 rver: Disabled
Discard Saved State Disebled
Show Log... CrisL
(i jice 0: [Optical Drive] Empty

_images/18_login.png
% Ubuntu [Running] - Oracle VM VirtualBox

le Machine View Input Devices Help

‘ou have the Auto capture keyboard.option turned on. This will cause the Virtual Machine to automatically. capture the keyboard every.time . (3) ()

e il Machine raprsha th s OSsuppors s pointr ntgration.Tis mesn htyou do nct ned 0 capurth mouse poitar o b bl ssXinyour guest 05~ |3 .

0]

(@}

osboxes.org

rgl

Rokgs miEdl® Rt an

_images/15_settings.png
¥# Oracle VM VirtualBox Manager

File Machine Help

M preview

Operating System: Ubuntu (64-bit)

(8] system
Base Memory: 8525 M8
h
Floppy, Optical, Hard Disk

VT-X/AMD-V, Nested Paging, KVM
Paravirtualization

I pisplay

Video Memory: 22 M8
Graphics Controller: VMSVGA
Acceleration: ED)
Remote Desktop Server: Disabled
Recording: Disabled

Storage

Controller: DE

IDE Secondary Device 0: [Optical Drive] VBoxGuestAdditions.iso (58.37 MB)
Controller: SATA

SATA Port 0: Ubuntu 20.04.3 (64bit).vdi (Norma, 500.00 GB)

_images/16_display.png
& Ubuntu - Settings

M General
E System
B Disoay
) storage

Audio

Network

<v
-
s Serial Ports
&
(]
=

usB

Shared Folders

User Interface

Display
Soreen Remote Display Recording
Video Memory: v

oM

Monitor Count: I

Scale Factor:

Graphics Controller: [VMSVGA ~

Acceleration: [7] Enable 3D Acceleration

_images/19_devices.png
Ubuntu [Running] - Oracle VM VirtualBox

File Machine View Input | Devices Help

Activities Optical Drives

Audio
9 Gt ¥ Network

osboxes Us

Shared Folders

Shared Clipboard
Drag and Drop

Insert Guest Additions CD image.

Insert the Guest Addition:

file into the virtual optical drive 1 [#] right crt

_images/20_installed.png
Activities B Terminal v Feb21 15:42 &0 il v

VirtualBox Guest Additions installation Q = - o ®

Verifying archive integrity... ALl good.

Uncompressing VirtualBox 6.1.32 Guest Additions for Linux..
VirtualBox Guest Additions installer

Copying additional installer modules .

Installing additional modules ...

VirtualBox Guest Additions: Starting.

VirtualBox Guest Additions: Building the VirtualBox Guest Additions kernel
modules. This may take a while.

VirtualBox Guest Additions: To build modules for other installed kernels, run
/sbin/rcvboxadd quicksetup <version>

VirtualBox Guest Addition: or

VirtualBox Guest Addition /sbin/rcvboxadd quicksetup all

VirtualBox Guest Additions: Building the modules for kernel 5.11.0-27-generic.

This system is currently not set up to build kernel modules.

Please install the gcc make perl packages from your distribution.

VirtualBox Guest Additions: Running kernel modules will not be replaced until
the system is restarted

Press Return to close this window...

@ VirtualBox Guest Addition:

_images/19_clipboard.png
3 Ubuntu [Running] - Oracle VM VirtualBox

File Machine View Input Devices Help
Activities cal Drives

osbores
Shared Folders
i Shared Clipboard Disabled
Drag and Drop Host To Guest
Guest To Host
Bidirectional

Insert Guest Additions CD

OOEPPONSG

_images/23_install_git.png
Activities () Terminal v Feb21 15:48

@

osboxes@osboxes: ~ Q = - & ®

:~$ which git
:~$ sudo apt-get install git
[sudo] password for osboxes: ll

_images/24_install_pip.png
Activities (3 Terminal v Mar7 17:26
L " osboxes@osboxes: ~ Q - s ®

i osboxes@osboxes:~$ sudo apt-get install pipll

_images/21_reboot.png
Activities () Terminal v Feb21 15:45

H osboxes@osboxes: ~ Q = - & ®

:~$ sudo rebootl]

_images/22_get_update.png
Activities () Terminal v Feb21 15:46

H osboxes@osbox:

@

:~$ sudo apt-get updatell

_images/CIM_Feeder_Index.png
Destination topic

Response topic

Request

Response

goss.gridappsd.process.request.config

/Istomp-client/response-queue

Send request

i

A wN R
-

"configurationType": "CIM Feeder Index",
"parameters": {}

-~

{

PVONOUVAWN R

"feeders”: [

"name": "final95@@node",

"mRID _EE71F6C9-56F0-4167-A14E-7F4C71F1QEAA",
"substationName": "ThreeSubs",

"substationID" _4AE25EA5-C364-43BB-BD7D-C8E87QEE8F5D",
"subregionName "Large",

"subregionID": "_A1170111-942A-6ABD-D325-C64886DC4D7D",
"regionName": "IEEE",

_images/9500-node-DGs.png
KVA

DER Name kW Rating Rating Characteristics Equipment Feeder |Location

SteamGenl 3000 4000 Legacy CHP steam plant S3 Old Town

PVFarm 500 750 Community solar farm S3 Old Town

MicroTurb-1 (200 250 S2

MicroTurb-2 (200 250 . . S2 New Neighborhood Microgrid
MicroTurb-3 1200 250 Natural gas microturbine Capstone C200S [10] 2

MicroTurb-4 (200 250 S2 Central Neighborhood
Diesel620 620 775 Inverter-connected diesel genset |Innovus IP CVS 620 [15] |SI Hospital Microgrid
Diesel590 590 737 (VAR support when OFF) Innovus IP CVS 590 Sl Central Neighborhood
LNGEnginelOO0 |100 125 Inverter-connect LNG genset InVerde Ultera 125 [16 S1 Shopping Center Microgrid
LNGEnginel800|1800 2250 LNG reciprocating peaking unit |Cummins HSK78G [13 S1 Industrial District Microgrid
Batteryl 250 250 Generic battery storage S2 . . .
Battery2 250 250 Generic battery storage S2 New Neighborhood Microgrid

_images/CIM_Dictionary.png
Destination topic goss.gridappsd.process.request.config

Response topic /stomp-client/response-queue

Request 14

2 "configurationType"”: "CIM Dictionary”,

3 "parameters”: {"model_id": "_49AD8E@7-3BF9-A4E2-CB8F-C3722F837B62"}

4}
Sel st

Response 14

2 "feeders": [
3 {
4 "name": "ieeel3nodeckt",
5 "mRID": "_49AD8E@7-3BF9-A4E2-CB8F-C3722F837B62",
6 "substation": "IEEE13",
7 "substationID "_6C62C905-6FC7-653D-9F1E-1340F974A587",
8 "subregion": "Small",
9 "subregionID": "_ABEB635F-729D-24BF-B8A4-E2EF268D8BOE",

10 "region": "IEEE",

_images/win_setup_ubuntu_launch.png
Microsoft Store

€ Home Gaming Entertainment Productivity Deals P Search

Ubuntu 20.04 LTS _

Canonical Group Limited * Developer tools > Utilities

12 Share

Ubuntu 20.04 LTS on Windows allows you to use Ubuntu Terminal and
run Ubuntu command line utilties including bash, ssh, git, apt and many
more.

More

_images/win_setup_ubuntu_store.png
Microsoft Store

€ Home Gaming Entertainment Productivity Deals

. You own this app.

Ubuntu 20.04 LTS

Canonical Group Limited « Developer tools > U

12 Share

Ubuntu 20.04 LTS on Windows allows you to use Ubuntu Terminal and
run Ubuntu command line utilties including bash, ssh, git, apt and many
more.

More

B EVERVONE

ESRB)

Overview System Requirements Reviews Related

Available on

Ba rc

Description

Ubuntu 20.04 LTS on Windows allows you to use Ubuntu Terminal and run Ubuntu command line utilities
including bash, ssh, git, apt and many more.

Please note that Windows 10 S does not support running this app.

P search

o

€

_images/win_setup_ubuntu_setup.png
@ Ubuntu 2004175

Installing, this may take a few minutes...

_images/win_setup_ubuntu_username2.png
@ Ubuntu 2004175

Installing, this may take a few minutes...

Please create a default UNIX user account. The username does not need to match your Windows username.
For more information visit: https://aka.ms/wslusers

Enter new UNIX username: demo_user

New password:

Retype new password: .

_static/file.png

_static/plus.png

_static/minus.png

_images/win_setup_miniconda_terminal.png
onda Prompt (Miniconda:

(base) C:\Users\

_images/win_setup_miniconda.png
O Miniconda3 py38_4.8.3 (64-bit) Setup. -

) ANACONDA.

Welcome to Miniconda3 py38_4.8.3
(64-bit) Setup

Setup wil guide you through the nstallaton of Miniconda3
py38_48.3 (64bi).

Itis recommended that you dose al other appications
before starting Setup. Tris il make it possble o update
relevant system fles without having to reboot your
computer.

Clck Next to contine.

_images/win_setup_open_ubuntu.png
Al Apps Documents Web More v

Best match

Ubuntu 2004 LTS
App

Search the web

Ubuntu 20.04 LTS

P ubuntu- seew

Open
Run as administrator
Pin to Start

Pin to taskbar

App settings

Rate and review
Share

Uninstall

£